从回溯到DP

回溯到动态规划

dp的开始从一个典型的例子开始:


300. 最长上升子序列
在这里插入图片描述
首先试着用回溯法来解决这个问题:

class Solution {
    int res = 0;
    public int lengthOfLIS(int[] nums) {
        if(nums.length == 0) return res;
        helper(nums, new ArrayList<>(),0);
        return res;
    }
    public void helper(int[] nums, List<Integer> list, int index){
        if(index >= nums.length) return;
        for(int i = index; i < nums.length; i++){
            if(list.size() > 0 && nums[i] <= list.get(list.size()-1)) continue;
            list.add(nums[i]);
            res = Math.max(res, list.size());
            helper(nums, list, i+1);
            list.remove(list.size()-1);
        }
    }
}

额,发现超时了~~~~ 好吧,上DP吧:

class Solution {
    public int lengthOfLIS(int[] nums) {
        int res = 0;
        if(nums.length == 0) return res;
        int[] dp = new int[nums.length];
        for(int i = 0; i<nums.length;i++) dp[i] = 1;
        for(int i = nums.length-2; i>=0 ;i--){
            for(int j = i+1; j<nums.length; j++){
                if(nums[i] < nums[j]) dp[i] = Math.max(dp[j] + 1,dp[i]);
            }
        }
       for(int i = 0; i<nums.length; i++)
            res = Math.max(res,dp[i]);
       return res;
    }
}

我们定义dp[i]为元素nums[i]为起点最长上升子序列的长度,初始化为1,从最后一个元素,依次向前推,最后找dp数组中最大的那个数,下标即为从当前位置出发,最长上升子序列


在这里插入图片描述

class Solution {
    public int eraseOverlapIntervals(int[][] intervals) {
        int len = intervals.length;
        if(len == 0) return 0;
        int width = intervals[0].length;
        if(width == 0) return 0;
        Arrays.sort(intervals, new Comparator<int[]>() {
            public int compare(int[] a, int[] b) {
                if(a[0] == b[0])
                    return a[1]-b[1];
                else
                    return a[0]-b[0];
            }
        });
        int[] dp = new int[len];
        Arrays.fill(dp,1);
        for(int i = len-2; i>=0; i--){
            for(int j = i+1; j<len; j++){
                if(intervals[j][0] >= intervals[i][1])
                    dp[i] = Math.max(dp[j]+1, dp[i]);
            }
        }
        for(int i = 0; i<len; i++)
            dp[0] = Math.max(dp[0],dp[i]);
        return len-dp[0];
    }
}

在这里插入图片描述
常规先用回溯来解决,超时再来考虑dp:

class Solution {
    int res = 1;
    public int wiggleMaxLength(int[] nums) {
        if(nums.length <= 1) return nums.length;
        helper(nums, 0, new ArrayList<>(), 0);
        return res;
    }
    public void helper(int[] nums, int index, List<Integer> list, int pre){
        if(index >= nums.length) return;
        for(int i = index; i<nums.length; i++){
            if((list.size() > 0 && pre*(nums[i] - list.get(list.size()-1)) > 0) 
            || (list.size() > 0 && nums[i] == list.get(list.size()-1))) continue;
            if(list.size() == 0){
                list.add(nums[i]);
                continue;
            }
            int back = pre;
            pre = nums[i] - list.get(list.size()-1);
            list.add(nums[i]);
            res = Math.max(res, list.size());
            helper(nums, i+1, list, pre);
            pre = back;
            list.remove(list.size()-1);
        }
        return;
    }
}

这题的思路和上一题基本是一样的,不过稍微复杂一点点,需要定义一个pre来记录之前的状态,如果之前两数之差为正数,那就将pre置为正数,这里用了这么一个条件:pre*(nums[i] - list.get(list.size()-1)) > 0,这个表示下一次的两数之差一定和上一次的相反,如果相同就continue;同样记录list中的最大个数,这里稍微注意两个数相同的情况

超时了~
在这里插入图片描述

所以,派大星准备好了吗?马上要上dp了!!!!!!

class Solution {
        public int wiggleMaxLength(int[] nums) {
        int len = nums.length;
        if(len <= 1) return len;
        /**
         * 定义dp[i][0] 表示 下标i到末尾最长wig,此处表示与上一个差为负数
         * 定义dp[i][1] 表示 下标i到末尾最长wig,此处表示与上一个差为正数
         */
        int[][] dp = new int[len][2];
        dp[len-1][0] = 1;
        dp[len-1][1] = 1;
        for(int i = len-2; i>=0; i--){
            for(int j = i+1; j<len; j++){
                if(nums[i] > nums[j]){
                    dp[i][1] = Math.max(dp[j][0]+1, dp[i][1]);
                    dp[i][0] = Math.max(dp[i][0], dp[j][0]);
                }else if(nums[i] < nums[j]){
                    dp[i][0] = Math.max(dp[j][1]+1, dp[i][0]);
                    dp[i][1] = Math.max(dp[i][1], dp[j][1]);
                }else{
                    dp[i][1] = Math.max(dp[i][1], dp[j][1]);
                    dp[i][0] = Math.max(dp[i][0], dp[j][0]);
                }
            }
        }
        return Math.max(dp[0][0],dp[0][1]);
    }
}

在这里插入图片描述
还可以优化,我想想,能不能更快点


在这里插入图片描述
日常回溯~

class Solution {
    int res = Integer.MAX_VALUE;
    public int minPathSum(int[][] grid) {
        if(grid.length <= 0 || grid[0].length <= 0) return 0;
        helper(grid,grid[0][0],0,0);
        return res;
    }
    public void helper(int[][] grid, int sum, int x, int y){
        if(x == grid.length-1 && y == grid[0].length-1){
            res = Math.min(sum,res);
            return;
        }
        int new_x = x+1;
        if(InArea(new_x,y,grid))
        helper(grid,sum+grid[new_x][y],new_x,y);
        int new_y = y+1;
        if(InArea(x,new_y,grid))
        helper(grid,sum+grid[x][new_y],x,new_y);
        return;
    }
    boolean InArea(int x, int y, int[][]grid){
        if(x >= grid.length || y >= grid[0].length || x < 0 || y < 0) return false;
        return true;
    }
}

超时!!!!!!那就上dp:

class Solution {
    public int minPathSum(int[][] grid) {
        if(grid.length <= 0 || grid[0].length <= 0) return 0;
        int len = grid.length;
        int width = grid[0].length;
        int[][] dp = new int[len][width];
        int sum = 0;
        for(int i = 0; i<width; i++){
            sum += grid[0][i];
            dp[0][i] = sum;
        }
        sum = 0;
        for(int i = 0; i<len; i++){
            sum += grid[i][0];
            dp[i][0] = sum;
        }
        for(int i = 1; i<len; i++){
            for(int j = 1; j<width; j++){
                dp[i][j] = Math.min(dp[i-1][j], dp[i][j-1])+grid[i][j];
            }
        }
        return dp[len-1][width-1];
    }
}

在这里插入图片描述

其中dp[i][j]表示从起点到该坐标的最短路径


在这里插入图片描述
这道题拿到手想用回溯的思路解决:

class Solution {
    int res = 0;
    public int maxProfit(int[] prices) {
        if(prices.length == 0) return 0;
        helper(prices,0,0);
        return res;
    }
    public void helper(int[] prices, int sum, int index){
        if(index >= prices.length) return;
        for(int i = index; i<prices.length; i++){
            for(int j = i+1; j<prices.length; j++){
                if(prices[j] <= prices[i]) continue;
                sum += prices[j]-prices[i];
                res = Math.max(res,sum);
                helper(prices,sum,j+2);
                sum -= prices[j]-prices[i];
            }
        }
        return;
    }
}

很显然,两层循环下再回溯,肯定会超时:

在这里插入图片描述
那就只能dp解决了:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值