霍夫丁------霍夫丁不等式

霍夫丁不等式提供了一种描述独立随机变量和与其期望值之间偏差的方法,通过凸函数和矩母函数的性质,给出了一种绝对误差的界限。证明过程涉及泰勒展开和马尔可夫不等式,适用于期望为零且取值在[a, b]上的随机变量。" 79748591,2390321,机器学习面试深入解析:集成学习、GBDT与Xgboost,"['机器学习', '面试', 'GBDT', 'Xgboost', '集成学习']
摘要由CSDN通过智能技术生成

霍夫丁------霍夫丁不等式

形式

一组相互独立的随机变量 X 1 , X 2 , X 3 . . . . . . X n X_1,X_2,X_3......X_n X1,X2,X3......Xn,定义随机变量 X = ∑ i = 1 n X i X=\sum_{i=1}^nX_i X=i=1nXi,对应的 X X X的期望 E ( X ) = μ E(X)=\mu E(X)=μ,所有的 a ≤ X i ≤ b a\le X_i\le b aXib,于是对于任意的 ξ > 0 \xi>0 ξ>0有:

P r ( X > μ + ξ ) ≤ exp ⁡ ( − 2 ξ 2 ( b − a ) 2 ) Pr(X>\mu+\xi)\le \exp(\frac{-2\xi^2}{(b-a)^2}) Pr(X>μ+ξ)exp((ba)22ξ2)

P r ( X < μ − ξ ) ≤ exp ⁡ ( − 2 ξ 2 ( b − a ) 2 ) Pr(X<\mu-\xi)\le \exp(\frac{-2\xi^2}{(b-a)^2}) Pr(X<μξ)exp((ba)22ξ2)

凸函数


从图上来看,凸函数是向下凹的,但是就是这么称呼,图上勾勒出了一个相似梯形,于是很容易得到如下关系:

t f ( x 1 ) + ( 1 − t ) f ( x 2 ) > f ( t x 1 + ( 1 − t ) x 2 ) tf(x_1)+(1-t)f(x_2)>f(tx_1+(1-t)x_2) tf(x1)+(1t)f(x2)>f(tx1+(1t)x2)

或者从平滑性来看,如果一个二次可导的函数,其二阶导数大于等于0,则对应的为凸函数。

关于凸函数的不等式

f ( x ) ≤ b − x b − a f ( a ) + x − a b − a f ( b ) f(x)\le \frac{b-x}{b-a}f(a)+\frac{x-a}{b-a}f(b) f(x)babxf(a)+baxaf(b)
请添加图片描述
证明如下:

图中直线上的点表示为:

y = f ( a ) + f ( b ) − f ( a ) b − a ( x − a ) y=f(a)+\frac{f(b)-f(a)}{b-a}(x-a) y=f(a)+baf(b)f(a)(xa)

转化一下为:

y = ( x − a ) b − a f ( b ) + ( 1 − ( x − a ) b − a ) f ( a ) = b − x b − a f ( a ) + x − a b − a f ( b ) y=\frac{(x-a)}{b-a}f(b)+(1-\frac{(x-a)}{b-a})f(a)=\frac{b-x}{b-a}f(a)+\frac{x-a}{b-a}f(b) y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值