【数据集】输电线路巡检公开数据集

一、电力线

1、电力线分类

PLD[101] 电力线分类(8000)

链接:https://data.mendeley.com/datasets/n6wrv4ry6v/8

2、电力线语义分割

1、GTPLD[101] 电力线语义分割(800)

链接:https://data.mendeley.com/datasets/twxp8xccsw/9

2、PLD-UAV[133] 电力线语义分割(860)

链接:

注:GitHub 下载 zip 压缩包到本地,解压时可能会报错,建议使用 git 获取

git clone https://github.com/SnorkerHeng/PLD-UAV

二、电力塔架

1、电力塔架实例分割

链接:https://github.com/r3ab/ttpla_dataset

注:GitHub 下载 zip 压缩包到本地,解压时可能会报错,建议使用 git 获取

git clone https://github.com/r3ab/ttpla_dataset

三、绝缘子

1、绝缘子及其故障检测

CPLD[109] 绝缘子及其故障检测(848)

链接:https://github.com/InsulatorData/InsulatorDataSet

注:GitHub 下载 zip 压缩包到本地,解压时可能会报错,建议使用 git 获取

git clone https://github.com/InsulatorData/InsulatorDataSet.git

2、绝缘子分类、缺陷检测

OPDL[132] 绝缘子分类、缺陷检测(4960)

需要向作者发送邮件请求获取数据集的下载地址

链接:http://www.dee.eng.ufba.br/dslab/index.php/opdl_dataset

参考文献

[1] 刘传洋,吴一全. 基于深度学习的输电线路视觉检测方法研究进展 [J]. 中国电机工程学报, 2023, 43 (19): 7423-7446. DOI:10.13334/j.0258-8013.pcsee.221139.

### 寻找用于训练或测试机器学习模型的输电线路绝缘子缺陷数据集 #### 数据集获取途径 为了进行电力传输线绝缘子缺陷检测的研究,可以利用多个公开的数据源来获得所需的数据集。一个具体的选择是从CSDN文库下载YOLOV5电线绝缘子缺陷检测的相关资料,其中包括了数据集、代码以及预训练模型等内容[^1]。 另一个可选的数据集来自微信公众号发布的资源链接,该链接提供了高压线绝缘子的数据集详情页面,通过关注并访问指定的文章可以获得进一步的信息和下载方式[^3]。 这些数据集通常包含了不同类型的绝缘子图像及其标注文件,适用于监督式学习任务中的分类、定位乃至实例分割等问题。对于希望深入研究此领域的人来说是非常宝贵的资源。 #### 准备工作建议 在准备使用上述任何一个数据集之前,应当仔细阅读其附带文档以了解具体的结构特点;同时也要注意确认所使用的框架版本是否兼容所提供的脚本工具。如果计划采用YOLOv5,则可以直接基于提供的配置快速启动实验环境,并按照教程指导完成初步验证过程。 此外,在实际应用过程中可能还需要考虑如何处理小目标检测这一挑战性问题,因为这直接影响到最终系统的性能表现。针对此类情况已有不少有效的解决方案被提出,比如改进特征提取网络的设计思路或是调整锚框参数设定等方法[^2]。 ```python import torch from pathlib import Path # 加载本地保存好的权重文件路径 weights_path = "path/to/your/yolov5_weights.pt" # 定义设备类型(GPU优先) device = 'cuda' if torch.cuda.is_available() else 'cpu' model = torch.hub.load('ultralytics/yolov5', 'custom', path=weights_path, force_reload=True).to(device) print(f"Model loaded successfully on {device}. Ready to perform inference.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

如果我是泡橘子

很高兴我踩过的坑能够帮助到你!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值