ApolloScape自动驾驶数据集

ApolloScape是百度在2018年推出的大规模自动驾驶数据集,旨在为全球自动驾驶研究者提供详实的数据资源。它包含了高分辨率图像、点云数据和精细的像素级标注,覆盖多种环境、天气和交通条件。数据集分为仿真、演示和标注三大部分,且配套云端服务,支持数据标注、训练和仿真。ApolloScape在环境复杂度、标注精度和数据量上超过了同类数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ECCV 2018和ApolloScape

目前,自动驾驶公司主要依赖于激光雷达来检测和识别物体,但相比激光雷达,基于视觉信息(如图像或视频)的3D感知或将大大降低成本。
此次ECCV 2018以解决潜在的计算机视觉为挑战,赛事主要包括基于视觉的细粒度车道标记分割、实时自定位及3D汽车实例了解等3大内容,所有参赛者都将基于ApolloScape提供的数据集进行挑战
目前的自动驾驶开发测试中,鲜少有团队有能力开发并维持一个适用的自动驾驶平台,长期的、系统的收集和标注新数据,因此行业亟需一个数据量充沛、标注详实的自动驾驶专用数据平台。
2018年3月,百度大规模自动驾驶数据集ApolloScape应需开放,致力于为全世界自动驾驶技术研究者提供更为实用的数据资源及评估标准。ApolloScape是百度在2017年创立的Apollo开放平台的一部分,目前采集图像来自于中国的不同城市,比如北京、上海和深圳等。

自动驾驶公开数据集比较

为了刻画高细粒度的静态3D世界,ApolloScape使用移动激光雷达扫描仪器从Reigl收集点云。这种方法产生的三维点云要比Velodyne产生点云更精确、更稠密。在采集车车顶上安装有标定好的高分辨率相机以每一米一帧的速率同步记录采集车周围的场景。而且,整个系统配有高精度GPS和IMU,相机的实时位姿都可以被同步记录。据介绍,ApolloScape是目前行业内环境最复杂、标注最精准、数据量最大的三维自动驾驶公开数据集。ApolloScape的标注精细度上超过同类型的KITTI,Cityscapes数据集,也超过UC Berkley最新发布的BDD100K。
这里写图片描述
目前,ApolloScape已经开放了14.7万帧的像素级语义标注图像,包括感知分类和路网数据等数十万帧逐像素语义分割标注的高分辨率图像数据,以及与其对应的逐像素语义标注,覆盖

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值