蓝桥杯 操作格子(线段树例题)

http://www.tudou.com/programs/view/ek_xh3IaBWw/?qq-pf-to=pcqq.group

线段树视频讲解

http://blog.csdn.net/x314542916/article/details/7837276

博客讲解

#include<stdio.h>
int Testmax(int a,int b)//判断大小的函数
{return a>b?a:b;}
typedef struct node//构造一个线段树的结构体
{
   int l,r;
   int sum,max;
}node;
node a[400010];//申请线段树节点空间
void Build(int n,int l,int r);//构建一棵范围在l至r范围的线段树
void Insert(int n, int v, int num);//为线段树插入一个值
void Change(int n, int v, int num);//为线段树改变一个权值
int QSum(int n, int l, int r);//求一个范围内的权值总和
int QMax(int n, int l, int r);//求一个范围内的最大值
int main()
{
    int i,j,n,m,value,que,b,c;
    scanf("%d%d",&n,&m);
    Build(1,1,n);//构建一个范围为1至n的线段树
    for(i=1;i<=n;i++)
    {
       scanf("%d",&value);
       Insert(1,i,value);//向已有线段树中插入权值
    }
    while(m--)
    {
      scanf("%d%d%d",&que,&b,&c);
      switch(que)
      {
         case 1:Change(1,b,c);break;//改变节点b的权值为c
         case 2:printf("%d\n", QSum(1,b,c));break;//计算b至c范围内的权值和
         case 3:printf("%d\n", QMax(1,b,c));break;//计算b至c范围内的最大权值
      }
    }
    return 0;
}
void Build(int n,int l,int r)//构建一棵范围在l至r范围的线段树
{
     a[n].l=l;//左边距
     a[n].r=r;//右边距
     a[n].sum=0;//范围在l至r之间权值和
     a[n].max=0;//范围在l至r之间权值最大值
     if(l==r)//如果左右边距相同不再构建孩子
     return;
     Build(n*2,l,(l+r)/2);//构建范围为l至(l+r)/2的左孩子
     Build(n*2+1,(l+r)/2+1,r);//构建范围为l至(l+r)/2的右孩子
}
void Insert(int n, int v, int num)//为线段树插入一个值
{
    a[n].sum += num;//总和加入新数
    if(a[n].max < num)
    a[n].max = num;//更新最大值
    if(a[n].l == a[n].r)//左右边距相等不再插入更新
    return;
    if(v <= (a[n].l + a[n].r) / 2)
    Insert(n*2, v, num);//更新左孩子
    else
    Insert(n*2+1, v, num);//更新右孩子
}
void Change(int n, int v, int num)//为线段树改变一个权值
{
    if(v == a[n].l && v == a[n].r)//下标与左右范围相等 ,存本数
    {
        a[n].sum = num;
        a[n].max = num;
        return;
    }
    int middle = (a[n].l + a[n].r) / 2;
    if(v <= middle)
    Change(n*2, v, num);//更改左孩子
    else
    Change(n*2+1, v, num);//更改右孩子
    a[n].sum = a[n*2].sum + a[n*2+1].sum;//更新总和
    a[n].max = Testmax(a[n*2].max,a[n*2+1].max);//更新最大值
}
int QSum(int n, int l, int r)//求一个范围内的权值总和
{
    if(l == a[n].l && r == a[n].r)//所求范围与左右范围相等 ,直接输出总和
    return a[n].sum;
    int middle = (a[n].l + a[n].r) / 2;
    if(r <= middle)
    return QSum(n*2, l, r);//若所求范围在左孩子范围内,从左孩子寻找
    else if(l > middle)
    return QSum(n*2+1, l, r);//若所求范围在右孩子范围内,从右孩子寻找
    else return QSum(n*2,l,middle) + QSum(n*2+1,middle+1,r);//若范围在左右孩子之间,分别求总和
}
int QMax(int n, int l, int r)//计算b至c范围内的最大权值
{
    if(l == a[n].l && r == a[n].r)//所求范围与左右范围相等 ,直接输出最大值
    return a[n].max;
    int middle = (a[n].l + a[n].r) / 2;
    if(r <= middle)
    return QMax(n*2, l, r);//若所求范围在左孩子范围内,从左孩子寻找
    else if(l > middle)
    return QMax(n*2+1, l, r);//若所求范围在右孩子范围内,从右孩子寻找
    else
    return Testmax(QMax(n*2, l, middle), QMax(n*2+1, middle+1, r));//若范围在左右孩子之间,分别求最大值,然后求最终最大值
}

简单例题HDU1754

AC代码

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct node
{
    int l,r;
    int ma;
}a[1000000];
void init(int l,int r,int i)
{
    a[i].l=l;
    a[i].r=r;
    a[i].ma=0;
    if(r!=l)
    {
        int mid=(l+r)/2;
        init(l,mid,2*i);
        init(mid+1,r,2*i+1);
    }
}
void insert(int i,int x,int m)
{
    if(x>=a[i].l&&x<=a[i].r)
    {
        a[i].ma=m;
    }
    if(a[i].l==a[i].r)
        return;
    int mid=(a[i].l+a[i].r)/2;
    if(x>mid)
        insert(2*i+1,x,m);
    else
        insert(2*i,x,m);
    a[i].ma=max(a[2*i].ma,a[2*i+1].ma);
}
int find_max(int x,int y,int i)
{
    if(a[i].l==x&&a[i].r==y)
        return a[i].ma;
    int mid=(a[i].l+a[i].r)/2;
    if(x>mid)
        return find_max(x,y,2*i+1);
    else if(y<=mid)
        return find_max(x,y,2*i);
    else
        return max(find_max(x,mid,2*i),find_max(mid+1,y,2*i+1));
}
int main()
{
    int n,m;
    while(~scanf("%d %d",&n,&m)){
    //建树
    init(1,n,1);
    for(int i=1;i<=n;i++)
    {
        int b;
        scanf("%d",&b);
        insert(1,i,b);
    }
    getchar();
    while(m--)
    {
        char op;
        int x,y;
        scanf("%c %d %d",&op,&x,&y);
        getchar();
        if(op=='U')
            insert(1,x,y);
        if(op=='Q')
            printf("%d\n",find_max(x,y,1));
    }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值