http://www.tudou.com/programs/view/ek_xh3IaBWw/?qq-pf-to=pcqq.group
线段树视频讲解
http://blog.csdn.net/x314542916/article/details/7837276
博客讲解
#include<stdio.h>
int Testmax(int a,int b)//判断大小的函数
{return a>b?a:b;}
typedef struct node//构造一个线段树的结构体
{
int l,r;
int sum,max;
}node;
node a[400010];//申请线段树节点空间
void Build(int n,int l,int r);//构建一棵范围在l至r范围的线段树
void Insert(int n, int v, int num);//为线段树插入一个值
void Change(int n, int v, int num);//为线段树改变一个权值
int QSum(int n, int l, int r);//求一个范围内的权值总和
int QMax(int n, int l, int r);//求一个范围内的最大值
int main()
{
int i,j,n,m,value,que,b,c;
scanf("%d%d",&n,&m);
Build(1,1,n);//构建一个范围为1至n的线段树
for(i=1;i<=n;i++)
{
scanf("%d",&value);
Insert(1,i,value);//向已有线段树中插入权值
}
while(m--)
{
scanf("%d%d%d",&que,&b,&c);
switch(que)
{
case 1:Change(1,b,c);break;//改变节点b的权值为c
case 2:printf("%d\n", QSum(1,b,c));break;//计算b至c范围内的权值和
case 3:printf("%d\n", QMax(1,b,c));break;//计算b至c范围内的最大权值
}
}
return 0;
}
void Build(int n,int l,int r)//构建一棵范围在l至r范围的线段树
{
a[n].l=l;//左边距
a[n].r=r;//右边距
a[n].sum=0;//范围在l至r之间权值和
a[n].max=0;//范围在l至r之间权值最大值
if(l==r)//如果左右边距相同不再构建孩子
return;
Build(n*2,l,(l+r)/2);//构建范围为l至(l+r)/2的左孩子
Build(n*2+1,(l+r)/2+1,r);//构建范围为l至(l+r)/2的右孩子
}
void Insert(int n, int v, int num)//为线段树插入一个值
{
a[n].sum += num;//总和加入新数
if(a[n].max < num)
a[n].max = num;//更新最大值
if(a[n].l == a[n].r)//左右边距相等不再插入更新
return;
if(v <= (a[n].l + a[n].r) / 2)
Insert(n*2, v, num);//更新左孩子
else
Insert(n*2+1, v, num);//更新右孩子
}
void Change(int n, int v, int num)//为线段树改变一个权值
{
if(v == a[n].l && v == a[n].r)//下标与左右范围相等 ,存本数
{
a[n].sum = num;
a[n].max = num;
return;
}
int middle = (a[n].l + a[n].r) / 2;
if(v <= middle)
Change(n*2, v, num);//更改左孩子
else
Change(n*2+1, v, num);//更改右孩子
a[n].sum = a[n*2].sum + a[n*2+1].sum;//更新总和
a[n].max = Testmax(a[n*2].max,a[n*2+1].max);//更新最大值
}
int QSum(int n, int l, int r)//求一个范围内的权值总和
{
if(l == a[n].l && r == a[n].r)//所求范围与左右范围相等 ,直接输出总和
return a[n].sum;
int middle = (a[n].l + a[n].r) / 2;
if(r <= middle)
return QSum(n*2, l, r);//若所求范围在左孩子范围内,从左孩子寻找
else if(l > middle)
return QSum(n*2+1, l, r);//若所求范围在右孩子范围内,从右孩子寻找
else return QSum(n*2,l,middle) + QSum(n*2+1,middle+1,r);//若范围在左右孩子之间,分别求总和
}
int QMax(int n, int l, int r)//计算b至c范围内的最大权值
{
if(l == a[n].l && r == a[n].r)//所求范围与左右范围相等 ,直接输出最大值
return a[n].max;
int middle = (a[n].l + a[n].r) / 2;
if(r <= middle)
return QMax(n*2, l, r);//若所求范围在左孩子范围内,从左孩子寻找
else if(l > middle)
return QMax(n*2+1, l, r);//若所求范围在右孩子范围内,从右孩子寻找
else
return Testmax(QMax(n*2, l, middle), QMax(n*2+1, middle+1, r));//若范围在左右孩子之间,分别求最大值,然后求最终最大值
}
简单例题HDU1754
AC代码
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct node
{
int l,r;
int ma;
}a[1000000];
void init(int l,int r,int i)
{
a[i].l=l;
a[i].r=r;
a[i].ma=0;
if(r!=l)
{
int mid=(l+r)/2;
init(l,mid,2*i);
init(mid+1,r,2*i+1);
}
}
void insert(int i,int x,int m)
{
if(x>=a[i].l&&x<=a[i].r)
{
a[i].ma=m;
}
if(a[i].l==a[i].r)
return;
int mid=(a[i].l+a[i].r)/2;
if(x>mid)
insert(2*i+1,x,m);
else
insert(2*i,x,m);
a[i].ma=max(a[2*i].ma,a[2*i+1].ma);
}
int find_max(int x,int y,int i)
{
if(a[i].l==x&&a[i].r==y)
return a[i].ma;
int mid=(a[i].l+a[i].r)/2;
if(x>mid)
return find_max(x,y,2*i+1);
else if(y<=mid)
return find_max(x,y,2*i);
else
return max(find_max(x,mid,2*i),find_max(mid+1,y,2*i+1));
}
int main()
{
int n,m;
while(~scanf("%d %d",&n,&m)){
//建树
init(1,n,1);
for(int i=1;i<=n;i++)
{
int b;
scanf("%d",&b);
insert(1,i,b);
}
getchar();
while(m--)
{
char op;
int x,y;
scanf("%c %d %d",&op,&x,&y);
getchar();
if(op=='U')
insert(1,x,y);
if(op=='Q')
printf("%d\n",find_max(x,y,1));
}
}
return 0;
}