覆盖的面积
Time Limit : 10000/5000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 21 Accepted Submission(s) : 13
Problem Description
给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积.
Input
输入数据的第一行是一个正整数T(1<=T<=100),代表测试数据的数量.每个测试数据的第一行是一个正整数N(1<=N<=1000),代表矩形的数量,然后是N行数据,每一行包含四个浮点数,代表平面上的一个矩形的左上角坐标和右下角坐标,矩形的上下边和X轴平行,左右边和Y轴平行.坐标的范围从0到100000. 注意:本题的输入数据较多,推荐使用scanf读入数据.
Output
对于每组测试数据,请计算出被这些矩形覆盖过至少两次的区域的面积.结果保留两位小数.
Sample Input
2 5 1 1 4 2 1 3 3 7 2 1.5 5 4.5 3.5 1.25 7.5 4 6 3 10 7 3 0 0 1 1 1 0 2 1 2 0 3 1
Sample Output
7.63 0.00
Author
Ignatius.L & weigang Lee
和今天做的这个题 Atlantis 博客地址:http://blog.csdn.net/sinat_37668729/article/details/78234266一个类型的题目,只不过它们的问题不同,一个是求面积(总面积不包括重复),一个是求面积(重复两次以上的),我的代码是在上个代码的基础上改的。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define L(rt) (rt<<1)
#define R(rt) (rt<<1|1)
#define INF 0x3f3f3f3f
#define maxn 2010
struct Node{
double x;
double y1;
double y2;
int flag;
}node[maxn]; //用来记录重叠情况,可以根据这个来计算,node节点中的len
bool cmp(Node a,Node b){
return a.x<b.x;
}
double y[maxn];//记录y坐标的数组
struct node{
int l;//线段树左整点点
int r;//右整点
double ml;
double mr;//ml和mr分别是对应的左右真实的浮点数端点
int s;//记录重叠情况
double len;
double cnt; //cnt是值被覆盖一次以上的长度,len值被覆盖两次以上的长度
}a[maxn*3]; //注意,如果<<2会超时。。。。
void build(int i,int left,int right){ //建树
a[i].l=left;
a[i].r=right;
a[i].ml=y[left];
a[i].mr=y[right];
a[i].s=0;
a[i].len=a[i].cnt=0;
if(a[i].l+1==a[i].r){
return;
}
int mid=(left+right)>>1;
build(L(i),left,mid);
build(R(i),mid,right);
}
void callen(int i){ //计算长度
if(a[i].s>=2){ //该区间被覆盖两次及以上
a[i].len=a[i].cnt=a[i].mr-a[i].ml;
return;
}
else if(a[i].s==1)//该区间被覆盖一次
{
a[i].cnt=a[i].mr-a[i].ml;
if(a[i].l+1==a[i].r)
a[i].len=0;
else
a[i].len=a[L(i)].cnt+a[R(i)].cnt;
}
else{ //该区间
if(a[i].l+1==a[i].r) //子节点
a[i].len=a[i].cnt=0;
else{ //非子节点
a[i].len=a[L(i)].len+a[R(i)].len;
a[i].cnt=a[L(i)].cnt+a[R(i)].cnt;
}
}
return;
}
void updata(int i,Node b)//加入线段后,更新线段树
{
if(a[i].ml==b.y1&&a[i].mr==b.y2){ //恰好是当前的区间
a[i].s+=b.flag;
callen(i);
return ;
}
if(b.y2<=a[L(i)].mr) updata(L(i),b); //需要更新的区间在当前节点的左孩子节点中
else if(b.y1>=a[R(i)].ml) updata(R(i),b); //需要更新的区间在当前节点的右孩子节点中
else{//横跨左右两个孩子节点
Node temp=b;
temp.y2=a[L(i)].mr;
updata(L(i),temp);
temp=b;
temp.y1=a[R(i)].ml;
updata(R(i),temp);
}
callen(i);
return ;
}
int main(){
int n,ans,cas=1,te;
int t;
double x1,x2,y1,y2;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
ans=1;
for(int i=0;i<n;i++){
scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
node[ans].x=x1;
node[ans].y1=y1;
node[ans].y2=y2;
node[ans].flag=1;
y[ans++]=y1;
node[ans].x=x2;
node[ans].y1=y1;
node[ans].y2=y2;
node[ans].flag=-1;
y[ans++]=y2;
}
sort(node+1,node+ans,cmp);
sort(y+1,y+ans);
build(1,1,ans-1);
updata(1,node[1]);
double sum=0;
for(int i=2;i<ans;i++){
sum+=a[1].len*(node[i].x-node[i-1].x);
updata(1,node[i]);
}
printf("%.2lf\n",sum);
}
return 0;
}