#1077 : RMQ问题再临-线段树(线段树)

#1077 : RMQ问题再临-线段树

时间限制: 10000ms
单点时限: 1000ms
内存限制: 256MB
描述

上回说到:小Hi给小Ho出了这样一道问题:假设整个货架上从左到右摆放了N种商品,并且依次标号为1到N,每次小Hi都给出一段区间[L, R],小Ho要做的是选出标号在这个区间内的所有商品重量最轻的一种,并且告诉小Hi这个商品的重量。但是在这个过程中,可能会因为其他人的各种行为,对某些位置上的商品的重量产生改变(如更换了其他种类的商品)。

小Ho提出了两种非常简单的方法,但是都不能完美的解决。那么这一次,面对更大的数据规模,小Ho将如何是好呢?

提示:其实只是比ST少计算了一些区间而已

输入

每个测试点(输入文件)有且仅有一组测试数据。

每组测试数据的第1行为一个整数N,意义如前文所述。

每组测试数据的第2行为N个整数,分别描述每种商品的重量,其中第i个整数表示标号为i的商品的重量weight_i。

每组测试数据的第3行为一个整数Q,表示小Hi总共询问的次数与商品的重量被更改的次数之和。

每组测试数据的第N+4~N+Q+3行,每行分别描述一次操作,每行的开头均为一个属于0或1的数字,分别表示该行描述一个询问和描述一次商品的重量的更改两种情况。对于第N+i+3行,如果该行描述一个询问,则接下来为两个整数Li, Ri,表示小Hi询问的一个区间[Li, Ri];如果该行描述一次商品的重量的更改,则接下来为两个整数Pi,Wi,表示位置编号为Pi的商品的重量变更为Wi

对于100%的数据,满足N<=10^6,Q<=10^6, 1<=Li<=Ri<=N,1<=Pi<=N, 0<weight_i, Wi<=10^4。

输出

对于每组测试数据,对于每个小Hi的询问,按照在输入中出现的顺序,各输出一行,表示查询的结果:标号在区间[Li, Ri]中的所有商品中重量最轻的商品的重量。

样例输入
10
3655 5246 8991 5933 7474 7603 6098 6654 2414 884 
6
0 4 9
0 2 10
1 4 7009
0 5 6
1 3 7949
1 3 1227
样例输出
2414
884
7474

思路:线段树,单点更新,区间查询最小值

代码:

/*
*/
#include<map>
#include<vector>
#include<queue>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#define maxn 1000000
#define PI acos(-1.0)
#define INF 1e9
using namespace std;
typedef long long ll;
struct Tree{
    int l;
    int r;
    int minn;
}tree[4*maxn+5];
int n,m,l,r,q,w;
int a[2*maxn+5],mi,f;
void build(int id,int l,int r)
{
    tree[id].l=l;
    tree[id].r=r;
    if (l==r)
        tree[id].minn=a[l];
    else
        {
            int mid=(l+r)/2;
            build(id*2,l,mid);
            build(id*2+1,mid+1,r);
            tree[id].minn=min(tree[id*2].minn,tree[id*2+1].minn);
        }
}
void update(int id,int pos,int val)
{
    if (tree[id].l==pos&&tree[id].r==pos)
        {
            tree[id].minn=val;
            return;
        }
    if (pos>(tree[id].r+tree[id].l)/2)
        update(id*2+1,pos,val);
    else
        update(id*2,pos,val);
        tree[id].minn=min(tree[id*2].minn,tree[id*2+1].minn);
}
void search(int id,int l,int r)
{
    if (l<=tree[id].l&&r>=tree[id].r)
        mi=min(mi,tree[id].minn);
    else
        {
            int k=(tree[id].l+tree[id].r)/2;
            if (l>k)
                search(id*2+1,l,r);
            else
                if (r<=k)
                    search(id*2,l,r);
                else
                    {
                        search(id*2,l,r);
                        search(id*2+1,l,r);
                    }
        }
}
int main()
{
    scanf("%d",&n);
    for (int i=1;i<=n;i++)
    scanf("%d",&a[i]);
    build(1,1,n);
    scanf("%d",&m);
    for (int i=1;i<=m;i++)
        {
            scanf("%d",&f);
            mi=0x7fffffff;
            if (f) { scanf("%d%d",&q,&w); update(1,q,w); }
            else { scanf("%d%d",&l,&r); search(1,l,r); printf("%d\n",mi); }
        }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值