-
10 3655 5246 8991 5933 7474 7603 6098 6654 2414 884 6 0 4 9 0 2 10 1 4 7009 0 5 6 1 3 7949 1 3 1227
样例输出
-
2414 884
7474
-
题解:其实就是递归将数组区间平均分成两份,也就是左孩子和右孩子,每个节点都保存了孩子节点的最值,所以能求出区间最值。但是不能进行删除元素和插入元素,只能解决区间查询。由于是完全二叉树,所以左孩子下标肯定是父节点的2倍,右孩子就是左孩子下标+1.。
#include <iostream> #include <cstdio> #include <cstring> using namespace std; const int maxn = 1000005; int a[maxn]; //保存信息 struct Array { int left; //左区间 int right; //右区间 int num; //商品重量 }; Array sa[2 * maxn]; //保存线段树信息 void segBuild(int st,int l,int r) //建立线段树 { sa[st].left = l; //该节点保存的是哪个区间 sa[st].right = r; if(l == r) //左右区间相等,说明该点是叶子节点,叶子节点保存商品重量 { sa[st].num = a[l]; return; } segBuild(2 * st,l,(l + r) / 2); //先去左孩子去找 segBuild(2 * st + 1,(l + r) / 2 + 1,r);//再去右孩子找 sa[st].num = min(sa[2 * st].num,sa[2 * st + 1].num); //该父节点保存左右孩子重量小的一个 } void update(int st,int pi,int wi) //从祖先开始找修改节点的信息 { if(sa[st].left == sa[st].right) //找到该节点(就是left = right = pi),修改信息 { sa[st].num = wi; return; } int mid = (sa[st].left + sa[st].right) / 2; if(pi <= mid) //该节点属于父亲左孩子 { update(2 * st,pi,wi); } else //该节点属于父亲右孩子 { update(2 * st + 1,pi,wi); } sa[st].num = min(sa[2 * st].num,sa[2 * st + 1].num); //更新父亲保存重量的最小值,去孩子中较小的一个 } int query(int st,int l,int r) //1. l,r与某个节点区间刚好一致。 { //2. l,r属于节点左孩子 int minnum = 1000000; //3. l,r属于节点右孩子 if(sa[st].left == l && sa[st].right == r) //4. l,r横跨左右孩子,则该节点取其中小的一个 { return sa[st].num; } int mid = (sa[st].left + sa[st].right) / 2; if(r <= mid) //属于左区间 { return query(2 * st,l,r); } if(l > mid) //属于右区间 { return query(2 * st + 1,l,r); } return min(query(2 * st,l,mid),query(2 * st + 1,mid + 1,r));//横跨左右孩子 } int main() { int n; cin>>n; memset(sa,100000,sizeof(sa)); for(int i = 1;i <= n;i++) { scanf("%d",a + i); } segBuild(1,1,n); //祖先下标为为1 int q; cin>>q; int flag,pi,wi; for(int i = 0;i < q;i++) { scanf("%d%d%d",&flag,&pi,&wi); if(0 == flag) { printf("%d\n",query(1,pi,wi)); } else { update(1,pi,wi); } } }
描述
上回说到:小Hi给小Ho出了这样一道问题:假设整个货架上从左到右摆放了N种商品,并且依次标号为1到N,每次小Hi都给出一段区间[L, R],小Ho要做的是选出标号在这个区间内的所有商品重量最轻的一种,并且告诉小Hi这个商品的重量。但是在这个过程中,可能会因为其他人的各种行为,对某些位置上的商品的重量产生改变(如更换了其他种类的商品)。
小Ho提出了两种非常简单的方法,但是都不能完美的解决。那么这一次,面对更大的数据规模,小Ho将如何是好呢?
输入
每个测试点(输入文件)有且仅有一组测试数据。
每组测试数据的第1行为一个整数N,意义如前文所述。
每组测试数据的第2行为N个整数,分别描述每种商品的重量,其中第i个整数表示标号为i的商品的重量weight_i。
每组测试数据的第3行为一个整数Q,表示小Hi总共询问的次数与商品的重量被更改的次数之和。
每组测试数据的第N+4~N+Q+3行,每行分别描述一次操作,每行的开头均为一个属于0或1的数字,分别表示该行描述一个询问和描述一次商品的重量的更改两种情况。对于第N+i+3行,如果该行描述一个询问,则接下来为两个整数Li, Ri,表示小Hi询问的一个区间[Li, Ri];如果该行描述一次商品的重量的更改,则接下来为两个整数Pi,Wi,表示位置编号为Pi的商品的重量变更为Wi
对于100%的数据,满足N<=10^6,Q<=10^6, 1<=Li<=Ri<=N,1<=Pi<=N, 0<weight_i, Wi<=10^4。
输出
对于每组测试数据,对于每个小Hi的询问,按照在输入中出现的顺序,各输出一行,表示查询的结果:标号在区间[Li, Ri]中的所有商品中重量最轻的商品的重量。