B - Game of Sum dp1

B - Game of Sum

点击打开链接

题意:

区间DP,以前看过一些关于区间DP的题目,但是没有做过题目,没有反应过来这是区间DP得题目。说一下题意:

给定n个石头,每个石头有一个分数,现在小伙伴A和小伙伴B进行一个游戏,小伙伴A先手,每个人每次可以选择从头或从尾取k个石头,要求出如果两个人每次都按自己最好的情况去取,最后A大于B的最大分数差是多少。

思路:

区间DP的经典题目,采用dfs枚举一下,运用sump[i][j]表示i开头j结尾的分数,dp[i][j]表示取得值,运用记忆化搜索,标记一下,有结果值得直接返回即可,一开始M开大了,一直WA。详见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define INF 0x7f7f7f7f
const int M = 105;
int n;
int num[M],sum[M][M],dp[M][M],vis[M][M];
int dfs(int i,int j)
{
    int ans=-INF;

    if(i>j) return 0;

    if(vis[i][j]) return dp[i][j];

    vis[i][j] = 1;

    for(int k=1;k<=j-i+1;k++)
    {
        ans = max(ans,sum[i][j]-min(dfs(i+k,j),dfs(i,j-k)));
    }
    return dp[i][j]=ans;
}

int main()
{
    while(~scanf("%d",&n))
    {
        if(n==0) break;
        memset(dp,0,sizeof(dp));
        memset(vis,0,sizeof(vis));
        for(int i=0;i<n;i++)
        {
            scanf("%d",&num[i]);
        }
        for(int i=0;i<n;i++)
        {
            int cnt=0;
            for(int j=i;j<n;j++)
            {
                cnt+=num[j];
                sum[i][j] = cnt; ///总和
            }
        }
        int aans = 2*dfs(0,n-1)-sum[0][n-1];  ///dfs(0, n-1) - (Sum[0][n-1] - dp(0, n-1)
        printf("%d\n",aans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值