题意:
区间DP,以前看过一些关于区间DP的题目,但是没有做过题目,没有反应过来这是区间DP得题目。说一下题意:
给定n个石头,每个石头有一个分数,现在小伙伴A和小伙伴B进行一个游戏,小伙伴A先手,每个人每次可以选择从头或从尾取k个石头,要求出如果两个人每次都按自己最好的情况去取,最后A大于B的最大分数差是多少。
思路:
区间DP的经典题目,采用dfs枚举一下,运用sump[i][j]表示i开头j结尾的分数,dp[i][j]表示取得值,运用记忆化搜索,标记一下,有结果值得直接返回即可,一开始M开大了,一直WA。详见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define INF 0x7f7f7f7f
const int M = 105;
int n;
int num[M],sum[M][M],dp[M][M],vis[M][M];
int dfs(int i,int j)
{
int ans=-INF;
if(i>j) return 0;
if(vis[i][j]) return dp[i][j];
vis[i][j] = 1;
for(int k=1;k<=j-i+1;k++)
{
ans = max(ans,sum[i][j]-min(dfs(i+k,j),dfs(i,j-k)));
}
return dp[i][j]=ans;
}
int main()
{
while(~scanf("%d",&n))
{
if(n==0) break;
memset(dp,0,sizeof(dp));
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)
{
scanf("%d",&num[i]);
}
for(int i=0;i<n;i++)
{
int cnt=0;
for(int j=i;j<n;j++)
{
cnt+=num[j];
sum[i][j] = cnt; ///总和
}
}
int aans = 2*dfs(0,n-1)-sum[0][n-1]; ///dfs(0, n-1) - (Sum[0][n-1] - dp(0, n-1)
printf("%d\n",aans);
}
return 0;
}