Maxwell-eq
文章平均质量分 79
Yuewen_Chen跃文
这个作者很懒,什么都没留下…
展开
-
Sommerfeld radiation condition
Arnold Johannes Wilhelm Sommerfeld (1868–1951)定义 Helmholtz方程(∇2+k2)u=−f in Rn(1)(\nabla^2+k^2)u=-f \ \ in\ \mathbb{R^n}\tag{1} 其中n=2,3n=2,3代表空间的维数;ff是具有紧致支集的函数,代表有界能量源;k>0k>0是常数,称为波数。 Sommerfeld原创 2017-04-02 11:10:42 · 7001 阅读 · 0 评论 -
Blackbook chapter 4
4.2 电磁2-形式和Lorenz 力概述 Df(4.1)F=12Fijdxi∧dxjF=\frac{1}{2}F_{ij}dx^i\land dx^j 这里的wedge 如此定义 : dxi∧dxj=dxi⊗dxj−dxj⊗dxidx^i\land dx^j=dx^i\otimes dx^j-dx^j\otimes dx^iExample (4.3)~(4.4) 给出了一个直观理解2−f原创 2017-04-10 16:29:40 · 321 阅读 · 0 评论 -
Newman–Penrose formalism
Null tetrad and sign convention NP包含了两个实的null 向量{l,n}\{l,n\} 和两个复向量{m,m¯}\{ m,\bar{m} \} lala=nana=mama=ma¯ma¯=0lana=lana=−1;mama¯=1=mama¯lama=lama¯=nama=nama¯=0\begin{array}. l_al^a=n_an^a=m_a原创 2017-03-31 21:08:02 · 558 阅读 · 0 评论 -
Lee的文章注记
Maxwell 方程边界条件 Maxwell equation: ∂tEi−ϵjki∂jBk∂tBi−ϵjki∂jEk=0=0(1)(2)\begin{align}\partial_t E_i-\epsilon_i^{jk}\partial_jB_k&=0 \tag{1}\\\partial_t B_i-\epsilon_i^{jk}\partial_jE_k&=0\tag{2}\end{原创 2017-03-23 19:29:39 · 464 阅读 · 0 评论 -
多维双曲方程
导论1.1节介绍了常见的一些定义,Jacobi 矩阵,特征矩阵;双曲的定义;线性退化;黎曼不变量;还给出了Example 1.1 理想气体动力学方程;最后介绍了什么叫一维的投影方程。 考虑∂u∂t+∑j=1d∂∂xjfj(u)=0(1.2)\frac{\partial u}{\partial t} +\sum_{j=1}^{d} \frac{\partial}{\partial x_j}f_j(原创 2017-04-26 15:51:35 · 549 阅读 · 0 评论 -
读书笔记:Hyperbolic reductions for Einstein's equations(Helmut Friedrich 1996)
2.基本记号(1) 真空场方程0=Rij=−12gkl{gij,kl+gkl,lj−gil,kj−gkj,il}+H′ij(g,∂g)0=R_{ij}=-\frac{1}{2}g^{kl}\{g_{ij,kl}+g_{kl,lj}-g_{il,kj}-g_{kj,il} \}+H'_{ij}(g,\partial g)(2)规范和坐标规范的选择 令Γk=gijΓkij\Gamma^k=g^{ij原创 2017-04-15 11:03:28 · 299 阅读 · 0 评论 -
球对称广义调和形式
概述 调和形式受到重视,是因为这种方法得到了第一种长时间双黑洞合并演化1,本质上广义调和形式就是将场方程写成 Manifestly 双曲的方程组,写成关于度量的分量的拟线性方程组。 Sec2: 在定义了广义的坐标调和条件□xi=Hi\displaystyle\square x^i=H^i以后,可以将原方程写成−12gijgkl,ij−∼=T¯kl\displaystyle原创 2017-04-12 12:29:38 · 537 阅读 · 1 评论 -
化简方程
改写二阶为一阶: 令k=∂tϕ+g0ig00∂iϕ,ξi=∂iϕ,\displaystyle k=\partial_t \phi+\frac{g^{0i}}{g^{00}}\partial_i \phi,\xi_i=\partial_i \phi,那么∂tξi=∂i∂tϕ=∂i(k−g0ig00∂iϕ)\displaystyle \partial_t \xi_i=\partial_i\parti原创 2017-04-25 12:00:15 · 546 阅读 · 0 评论