拟微分算子

复习

  • 多重指标 α=(α1,..αn)Nn,|α|=α1+....αn,Dj=ixj
  • 微分算子
    P=|α|maα(x)Dα
  • P 的象征 是定义在 Ω×Rn 上关于 ξ 的多项式函数:
    P(x,ξ)=|α|maα(x)ξα
  • P m 阶主象征 是关于 ξ 的齐次函数
    P(x,ξ)=|α|=maα(x)ξα
  • 分布 满足下面条件的连续线性泛函 u 称为分布
    |u,ϕ|CsupxKsup|α|m|αϕ(x)|  ϕ|Ω/K=0C0(Ω)
    分布的全体构成空间 D(Ω) ;分布的例子:单点Dirac 质量 δx0,ϕ=ϕ(x0) 这里的 x0Ω,ϕC0(Ω)
  • 分布的导数 iu
    ju,ϕ=u,jϕ
    同理,可以定义分布的数乘 au
    au,ϕ=u,aϕ
    ;还可以定义分布上的微分算子 P=aαDα ,令  tPϕ=(1)|α|Dα(aαϕ)
    Pu,ϕ=u, tPϕ
  • 卷积
    uv(x)=u(y)v(xy)dy=u(xy)v(y)dy
    卷积可以用来做“光滑化”: 构造光滑函数族 { uϵ=uϕϵ} ,用它来逼近函数 u
    uϵ(x)ψ(x)dxu,ψ
  • Rn 上的傅立叶分析 uS,ξRn 定义
    u^(ξ)=eiξxu(x)dx
    Fu=u^ 称作是 u 的傅立叶变换,算子 F 具有如下性质:
    \bbox[20px,border:2pxsolidred]Djuˆ(ξ)τyuˆ(ξ)xjuˆ(ξ)(eixηuˆ)(ξ)=ξju^(ξ)=eiyξu^(ξ)=Dju^(ξ)=τηu^(ξ)(a)
  • 傅里叶逆变换公式
    u(x)=1(2π)neixξu^(ξ)dξ
    F S S 的同构。

动机

拟微分算子的研究开始于1960年代,最开始见于 Kohn,Hormander 等人的工作。拟微分算子在Atiyah-Singer 指标定理证明扮演了重要角色。[Atiyah, Michael F.; Singer, Isadore M. (1968)]人们将微分方程视作是微分算子所给出的映射,而解微分方程就相当于在某种意义上求算子的逆。我们知道,在微分算子类中,可以有加法和乘法,而除法(求逆)一般是不行的,找到一个合理的除法运算的定义就成为了数学家的目标。众所周知,傅立叶变换可以将自变量空间的微分运算转化成对偶空间的乘以多项式的运算 Djuˆ(ξ)=ξju^(ξ) ,反之亦然。那么,能否将空间自变量的微分算子求逆运算转化成为对偶空间的除以某个函数的运算?

  • 常系数的线性微分算子:
    P(D):=αaαDα(1)
    其中: α=(α1,..αn) 是多元指标, Dα:=(i1)α1..(in)αn,aα 是复数。微分算子(1)作用在 Rn 上具有紧致支集函数 u(x) 上。这样的算子可以简单的写成傅立叶变换的组合,简单的写成多项式函数的乘法(象征 Symbol)
    P(ξ)=αaαξα
    做傅立叶逆变换:
    P(D)u(x)=1(2π)nRnRnei(xy)ξP(ξ)u(y)dydξ(2)
  • 练习1:推导(2)
  • Definition of pseudo-differential operators将拟微分算子视作微分算的推广:一个 Rn 上的拟微分算子 P(x,D) 作用在函数 u(x) 上得到的依旧是 x 的函数
    \bbox[19px,border:2pxsolidred]P(x,D)u(x)=1(2π)nRneixξP(x,ξ)u^(ξ)dξ(3)(3)
    这里的 u^(ξ) u 的傅立叶变换, P(x,ξ) 属于某个象征类
  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值