Arnold Johannes Wilhelm Sommerfeld (1868–1951)
复习
- curl 一个向量场的Curl 描述了一个三维的向量场
F
的无穷小旋转(infinitesimal rotation),有时也用
∇×F,rotF 来表示。直观上,如果向量场表示流体的速度,那么 curlF 描述的就是循环密度(circulation density of the fluid), curlF=0 的场被称为无旋的。分析上的定义(∇×F)⋅n^:=limA→01|A|∮∂AF⋅dr直观上,举个简单例子:取 F=yx^−xy^ ,它的旋只有 z^ 方向有分量,可以轻易算出来 2πr2πr2=2 ,直观上就是单位面积上的动量。在笛卡尔坐标系下 ,设 F=[Fx,Fy,Fz] 则
∇×F=∣∣∣∣∣i^∂xFxj^∂yFyk^∂zFz∣∣∣∣∣在一般坐标下面(∇×F)k=εklm∇lFm其中, ε 是Levi-Civita tensor, ∇ 是协变导数。 - 常见计算关系
∇×(v×F)=(∇⋅F+f⋅F)v−(∇⋅v+v⋅∇)F(K1)∇×(∇×F)=∇(∇⋅F)−∇2F(K2)∇×(∇φ)=0(K3)∇×(φF)=∇φ×F+φ∇×F(K4)
辐射条件定义
Helmholtz方程(∇2+k2)u=−f in Rn(1)其中 n=2,3 代表空间的维数; f 是具有紧致支集的函数,代表有界能量源;k>0 是常数,称为波数。Sommerfeld 辐射条件
lim|x|→∞|x|n−12(∂∂|x|−ik)u(x)=0(2)这里假设时间调和场是 e−iwtu ;辐射条件就是用来找到方程的唯一解。辐射解radiating
如果方程(1)的解 u 满足条件(2),就称u 是辐射的(radiating)
简单例子
考虑
f=δ(x−x0)
此时,方程有无数解,比如像:
u=cu++(1−c)u−
这里的
u(x)±=e±ik|x−x0|4π|x−x0|
练习:推导出上述解; 但只有
u+
符合Sommerfeld 边界条件,他代表从点
x0
发出的辐射场,而其他解都是非物理的。比如
u−
可以解释成从无穷远处来的能量,最后Sinking 在
x0
处。
关于赫姆霍兹方程
动机
考虑波动方程(∇2−1c2∂2∂t2)u(r,t)=0用分离变量法 u(r,t)=A(r)T(t) 代入原方程可得:
∇2A(r)A(r)=1T(t)c2∂2∂t2T(t)观察方程两边,左边只依赖于 r ,右边只依赖于t ,所以只有在左右两边都等于常数的才会成立
∇2A(r)A(r)=1T(t)c2d2dt2T(t)=−k2所以会得到赫姆霍兹方程(Δ+k2)A(r)=0(1)(d2dt2+c2k2)T(t)=0(2)
注: w:=ck 称之为角频率。分离变量法解赫姆霍兹方程 考虑半径为 r=a 的圆盘上的情况, 引进极坐标 (r,θ)
,施加边界条件 A|r=a=0 可得
{Arr+1rAr+1r2Aθθ+k2AA(a,θ)=0=0分离变量A(r,θ)=R(r)Θ(θ)
得到{Θ′′+n2Θr2R′′+rR′+r2k2R−n2R=0=0- 近轴近似 将复的振幅写成
A(r)=u(r)eikz
, 定义
Δ⊥:=∂2∂x2+∂2∂y2
, 在满足条件
|∂2u∂z2|≪|k∂u∂z|(轴不等式)时, u 接近解以下方程的解将 A(r)=u(r)eikz 带入Helmholtz 方程可得:
Δ⊥u+2ik∂u∂z=0(*) (∂2∂x2+∂2∂y2)ueikz+∂2∂z2ueikz+2(∂∂zu)ikeikz=0由于轴不等式,可以将 ∂2∂z2ueikz 忽略不计,再将 u=Ae−ikz 带回(*)可得关于 A(r) 的近轴方程Δ⊥A+2ik∂A∂z=0(**) - 非齐次赫姆霍兹方程
(∇2+k2)u=−f in Rn为了使方程有唯一解,我们需要在无穷远处施加边界条件—— Sommerfeld 辐射条件:limr→∞rn−12(∂∂r−ik)A(rx^)=0这里的 |x^|=1 ;在 Sommerfeld 边界条件下,我们可以用卷积的办法给出方程的解:A(x)=(G∗f)(x)=∫RnG(x−y)f(y)dy这里的 G 是方程的Green 函数。
练习:考虑f=δ(x) ,推导出 G(x)=ieik|x|2k
Maxwell 方程的辐射条件 Inverse Acoustic and ElectromagneticScattering Theory , Chapter6,p157
- 本节考虑真空Maxwell方程
{curl E−ikHcurl H+ikE=0=0(1)这里 k 是波数,
k2=(ε+iσw)μw2 - 定理6.2 Stratton-Chu公式 设
D
是
C2 的有界区域, v 是∂D 的单位外法向量,设 E,H∈C1(D)∩C(D¯) 是Maxwell 方程(1)在区域 D 里面的解,则它们满足Stratton−Chu 公式E(x)=−curl∫∂Dv(y)×E(y)Φ(x,y)ds(y)+1ikcurl curl∫∂Dv(y)×H(y)Φ(x,y)ds(y)H(x)=−curl∫∂Dv(y)×H(y)Φ(x,y)ds(y)−1ikcurl curl∫∂Dv(y)×E(y)Φ(x,y)ds(y) - 定理6.4 设
E,H
是(1)的解,则
E,H
是无源场(
divE=0,divH=0
,比如说磁场,进多少出多少),且满足Helmholtz 方程
ΔE+k2E=0ΔH+k2H=0反过来,设 E(or H) 是Helmholtz 方程的解,且 divE=0(or divH=0) ,那么 E,H:=curlEik(or H,E:=−curlHik) 满足Maxwell 方程。
- Silver-Muller辐射条件
limr→∞(H×x−rE)=0(2)或者limr→∞(E×x−rH)=0这里的 r=|x|
- 辐射解 满足条件(2)的Maxwell方程解被称为辐射。
- 定理6.6 Stratton-Chu公式 设有界区域
D
是某个无界
C2 区域的开补集, v 是∂D 单位外法向量。 E,H∈C1(R3∖D¯)∩C(R3∖D) 是Maxwell 方程在 R3∖D¯ 上的辐射解,则有Stratton-Chu公式:E(x)=curl∫∂Dv(y)×E(y)Φ(x,y)ds(y)−1ikcurl curl∫∂Dv(y)×H(y)Φ(x,y)ds(y)H(x)=curl∫∂Dv(y)×H(y)Φ(x,y)ds(y)+1ikcurl curl∫∂Dv(y)×E(y)Φ(x,y)ds(y)