深度优先搜索:(Depth-First-Search)
1.从起点出发,走过的点要做标记,发现有并未走过的点,就随意挑一个往前走,走不了就回退,此种路径搜索策略称为“深度优先搜索”,简称“深搜”。
bool DFS(v)
{
if(v为终点)
return true;
if(v为旧点)
return false;
将v标记为旧点;
对和v相邻的每个节点U
{
if(dfs(U)==true)
return true;
}
return false;
}
2.判断从V出发是否能走到终点,如果能,记录路径。
Node path[MAX_LEN];//MAX_LEN取结点总数即可
int depth;
bool DFS(v)
{
if(V为终点)
{
path[depth]=V;
return true;
}
if(V为旧点)
{
return false;
}
将V标记为旧点;
path[depth]=V;
++depth;
对和V相邻的每个节点U
{
if(DFS(U)==true)
return true;
}
--depth;
return false;
}
3.城堡问题
如图是一个城堡的地形图,请编写一个程序,计算城堡一共有多少房间,最大的房间有多大。
城堡被分成m*n(m<=50,n<=50)个方块,每个方块有0-4面墙。
################
# | | # #
####---#####---#
# # | # #
################
输入:
程序从标准输入设备读入数据;
第一行是两个整数,分别是南北向、东西向的方块数;
在接下来的输入行里,每个方块用一个数字(0<=p<=50)描述。1表示西墙,2表示北墙,4表示东墙,8表示南墙。
每个方块用代表其周围墙的数字之和表示,城堡的内墙被计算2次,方块(1,1)的南墙同时也是方块(2,1)的北墙。
输入的数据保证城堡至少2个房间。
输出:
城堡的房间数、城堡中最大房间所包括的方块数。
4 7
11 6 11 6 3 10 6
7 9 6 13 5 15 5
1 10 12 7 13 7 5
13 11 10 8 10 12 13
输出:
5
9
思路:
1.把方块看作是节点,相邻两个方块之间如果没有墙,则在方块之间连一条边,这样城堡就能转换成一个图。
2.求房间个数,实际上就是在求图中有多少个极大连通子图
3.一个联通子图,往里头加任何一个图里的其他点,就会变得不连通,那么这个连通子图是极大连通子图。
#include <bits/stdc++.h>
using namespace std;
int r,c;//行列数
int rooms[60][60];
int color[60][60];//方块是否被染色过的标记
int maxRoomArea=0,roomNum=0;
int roomArea;
void DFS(int i,int k)
{
if(color[i][k])
return;
++roomArea;
color[i][k]=roomNum;
if((rooms[i][k]&1)==0) DFS(i,k-1);//向西走
if((rooms[i][k]&2)==0) DFS(i-1,k);//向北走
if((rooms[i][k]&4)==0) DFS(i,k+1);//东
if((rooms[i][k]&8)==0) DFS(i+1,k);//南
}
int main()
{
cin>>r>>c;
for(int i=1;i<=r;i++)
{
for(int k=1;k<=c;k++)
cin>>rooms[i][k];
}
memset(color,0,sizeof(color));
for(int i=1;i<=r;i++)
{
for(int k=1;k<=c;k++)
{
if(!color[i][k])
{
++roomNum;
roomArea=0;
DFS(i,k);
maxRoomArea=max(roomArea,maxRoomArea);
}
}
}
cout<<roomNum<<endl;
cout<<maxRoomArea<<endl;
return 0;
}