[TSC 2023] SecGNN:隐私保护图神经网络训练和推理作为云服务

SecGNN是一个系统,首次在云环境中提供隐私保护的GNN训练和推理服务。它结合了轻量级密码学和机器学习技术,利用差分隐私的高斯机制和迭代隐私增强训练过程的隐私性,同时在推理阶段使用同态加密保护模型输出的隐私。实验显示SecGNN能在保护隐私的同时保持良好的性能和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SecGNN: Privacy-Preserving Graph Neural Network Training and Inference as a Cloud Service | IEEE Journals & Magazine | IEEE Xplore

摘要

图被广泛用于对实体之间的复杂关系进行建模。作为图分析的强大工具,图神经网络(GNN)因其端到端的处理能力而最近受到广泛关注。随着云计算的普及,在云中部署复杂、资源密集型的模型训练和推理服务因其突出的优势而越来越流行。然而,GNN训练和推理服务如果部署在云中,将引发对信息丰富和专有图形数据(以及由此产生的模型)的关键隐私问题。虽然在安全神经网络训练和推理方面已经有一些工作,但它们都专注于处理图像和文本的卷积神经网络,而不是具有丰富结构信息的复杂图形数据。在本文中,我们设计、实现和评估了 SecGNN,这是第一个支持云中保护隐私的 GNN 训练和推理服务的系统。SecGNN建立在对轻量级密码学和机器学习技术的见解的协同作用之上。我们深入研究了GNN训练和推理的过程,并设计了一系列相应的安全定制协议来支持整体计算。大量实验表明,SecGNN实现了相当的明文训练和推理精度,并具有可观的性能。

核心内容:

SecGNN采用了一种基于图的机器学习方法来处理数据,并使用了基于差分隐私的机制来保护隐私。在训练过程中,SecGNN使用了一种称为高斯机制的差分隐私技术,将随机噪声添加到模型参数中。同时,SecGNN还使用了一种称为迭代隐私技术的方法,通过迭代添加噪声来进一步提高隐私保护的强度。

在推断过程中,SecGNN使用了一种称为同态加密的方法,将模型输出加密并传输到云服务商。在云服务商的端,模型输出被解密,并使用解密后的输出进行推断。这种方法保证了模型输出的隐私性,同时不需要在云端存储或处理原始数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值