异常检测|NeuTraL AD:用于图像之外异常检测的Neural Transformation

论文提出了NeuTraLAD,一个使用可学习数据转换和确定性对比学习损失进行异常检测的框架。该方法在时间序列和表格数据上表现优越,尤其适用于单对静止和n-对静止异常检测任务。通过学习的转换器,模型能适应不同数据集并生成有效的异常分数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:https://arxiv.org/abs/2103.16440

代码地址:https://github.com/boschresearch/NeuTraL-AD

一、论文介绍

1.1 摘要

数据转换(例如旋转、反射和裁剪)在自我监督学习中起着重要作用。通常,图像会被转换成不同的视图,并且在涉及这些视图的任务上训练的神经网络会为下游任务(包括异常检测)生成有用的特征表示。然而,对于图像数据以外的异常检测,通常不清楚要使用哪些转换。在这里,我们提出了一个简单的端到端程序,用于通过可学习的转换进行异常检测。关键思想是将转换后的数据嵌入到语义空间中,这样转换后的数据仍然类似于它们未转换的形式,而不同的转换很容易区分。对时间序列的大量实验表明,我们提出的方法在单对静止设置中优于现有方法,并且在更具挑战性的 n-对静止异常检测任务中具有竞争力。在医疗和网络安全表格数据上,我们的方法比以前的工作更准确地学习特定领域的转换和检测异常。

1.2 主要贡献
  • 数据增强在自监督学习领域很重要,但对于图像数据的转换并不适用于时间序列和表格数据(tabular data),因此对于图像之外的数据,论文提出新的可学习的数据转换方式(Learnable Data Transformations)
  • 构建了端到端的异常检测模型,确定了新的确定性对比学习损失函数(deterministic contrastive loss),该损失函数不需要额外的正则化或者对抗学习,可直接用于计算异常分数。

二、论文模型和方法介绍

论文的方法 NeuTraL AD 包含两个部分:一组可学习的转器换和一个编码器。两者都在确定性对比损失 (deterministic contrastive loss,DCL) 上联合训练。目标有两个目的。在训练期间,它被优化以找到编码器的参数和转换。在测试期间,DCL 还用于将每个样本评分为异常值或异常值。

在这里插入图片描述

2.1可学习的数据转换器 Learnable Data Transformations

给定有N个样本的数据集D,数据空间为X。构造K个可学习的转换器T,这些转换器的参数是可以进行梯度优化的,将他们的参数记为θk。本文实验中使用简单的前馈神经网络建模T,具体实现方式见下文实验部分。

2.2确定性对比学习损失 deterministic contrastive loss

NeuTraL AD的一个关键因素是新的损失函数。DCL

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值