论文地址:https://arxiv.org/abs/2103.16440
代码地址:https://github.com/boschresearch/NeuTraL-AD
一、论文介绍
1.1 摘要
数据转换(例如旋转、反射和裁剪)在自我监督学习中起着重要作用。通常,图像会被转换成不同的视图,并且在涉及这些视图的任务上训练的神经网络会为下游任务(包括异常检测)生成有用的特征表示。然而,对于图像数据以外的异常检测,通常不清楚要使用哪些转换。在这里,我们提出了一个简单的端到端程序,用于通过可学习的转换进行异常检测。关键思想是将转换后的数据嵌入到语义空间中,这样转换后的数据仍然类似于它们未转换的形式,而不同的转换很容易区分。对时间序列的大量实验表明,我们提出的方法在单对静止设置中优于现有方法,并且在更具挑战性的 n-对静止异常检测任务中具有竞争力。在医疗和网络安全表格数据上,我们的方法比以前的工作更准确地学习特定领域的转换和检测异常。
1.2 主要贡献
- 数据增强在自监督学习领域很重要,但对于图像数据的转换并不适用于时间序列和表格数据(tabular data),因此对于图像之外的数据,论文提出新的可学习的数据转换方式(Learnable Data Transformations)
- 构建了端到端的异常检测模型,确定了新的确定性对比学习损失函数(deterministic contrastive loss),该损失函数不需要额外的正则化或者对抗学习,可直接用于计算异常分数。
二、论文模型和方法介绍
论文的方法 NeuTraL AD 包含两个部分:一组可学习的转器换和一个编码器。两者都在确定性对比损失 (deterministic contrastive loss,DCL) 上联合训练。目标有两个目的。在训练期间,它被优化以找到编码器的参数和转换。在测试期间,DCL 还用于将每个样本评分为异常值或异常值。
2.1可学习的数据转换器 Learnable Data Transformations
给定有N个样本的数据集D,数据空间为X。构造K个可学习的转换器T,这些转换器的参数是可以进行梯度优化的,将他们的参数记为θk。本文实验中使用简单的前馈神经网络建模T,具体实现方式见下文实验部分。
2.2确定性对比学习损失 deterministic contrastive loss
NeuTraL AD的一个关键因素是新的损失函数。DCL