机器学习笔记一

1、机器学习概念:对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么我们称这个计算机程序在从经验E中学习。
eg:西洋跳棋学习问题

任务T:下跳棋

性能标准P:比赛中击败对手的百分比

训练经验E:以往和自己进行对弈

垃圾邮件问题:

任务T:甄别垃圾文件

性能标准P:甄别的正确率

训练经验E:以往的手动分类

2、监督学习

回归问题:连续输出值

分类问题:离散输出值

无穷多特征也可以处理:后期会学到

支持向量机:后续会学到

3、聚类算法是无监督学习算法的一种

4、鸡尾酒会算法(无监督学习算法的一种) :分辩再分离(几种,都有啥)

[W,s,v] =svd((repmat(sum(x.*x,1),size(x,1),1.*x)*x');

svd:奇异值分解(需要线代知识)

5、无监督和监督:链接:https://blog.csdn.net/u012005313/article/details/48023689

6、Octava编程环境,用它建立学习算法原型,再将其起迁移到其他编译环境如c++等。在硅谷好多人都是先用matlab/octava先实现自己的想法,再转化成其他语言。参考链接https://blog.csdn.net/u014096352/article/details/72854077/

7、数据集->学习算法-> (假设)函数

假设函数:

小写m:样本个数

x:输入变量,特征

y:输出值

训练样本(x,y);

(x^(i),y^(i))表示具体的样本

8、线性回归:

代价函数:代价函数有很多种。这里用的是平均误差代价函数。

梯度下降算法:用来求函数最小值,在这里用来求代价函数的最小值,使其自动逼近最小值,从而求得相应的最合适的(假设函数)参数值。

下面是代价函数的下降算法的一次迭代过程:
阅读更多
个人分类: 机器学习
上一篇java static关键字
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭