Python 中的 logging 模块可以让你跟踪代码运行时的事件,当程序崩溃时可以查看日志并且发现是什么引发了错误。Log 信息有内置的层级——调试(debugging)、信息(informational)、警告(warnings)、错误(error)和严重错误(critical)。你也可以在 logging 中包含 traceback 信息。不管是小项目还是大项目,都推荐在 Python 程序中使用 logging。本文将简单清晰地介绍如何使用 logging 模块。
为什么使用 logging?
当你运行一个 Python 脚本时,你可能想要知道脚本的哪个部分在执行,并且检视变量的当前值。
通常,可以只使用print()打印出你想要的信息。在小程序中,可能靠这个就足够了。
但问题是,当你处理有很多个模块的大项目时,就需要一个更加灵活的方法。
为什么?
因为代码需要经历开发、调试、审查、测试或者上线等不同阶段。在开发时你想要打印的信息类型可能和上线后你想看到的信息类型完全不同。
也就是说,在“测试”时,你可能只想看警告和错误信息,然而在“调试”时,你可能还想看到跟调试相关的信息。
如果你还想打印出使用的模块以及代码运行的时间,那么你的代码很容易变得混乱。
使用logging模块,这些问题就能很容易地解决。
logging模块可以:
控制信息层级,仅记录需要的信息。
控制显示或者保存日志的时机。
使用内置信息模板控制日志格式。
知晓信息来自于哪个模块。
基本 logging 例子