似然函数的一般理解

似然与概率的区别

似然 VS 概率

在英语语境里,likelihood 和 probability 的日常使用是可以互换的,都表示对机会 (chance) 的同义替代。但在数学中,probability 这一指代是有严格的定义的,即符合柯尔莫果洛夫公理 (Kolmogorov axioms) 的一种数学对象(换句话说,不是所有的可以用0到1之间的数所表示的对象都能称为概率),而 likelihood (function) 这一概念是由Fisher提出,他采用这个词,也是为了凸显他所要表述的数学对象既和 probability 有千丝万缕的联系,但又不完全一样的这一感觉。中文把它们一个翻译为概率一个翻译为似然也是独具匠心。

置信区间&置信度 VS 概率

除此之外,统计学中的另一常见概念"置信(区间)"(confidence interval)中的置信度(confidence level)也不是概率。换句话说,"构建关于总体均值的95%的置信区间"里的"95%"不是概率意义下的0.95(即使它也是0到1之间的代表机会chance的一个度量);更常见的p-值(p-value)严格来说其本身是一个(恰好位于0到1之间的)统计量(即样本随机变量的函数),所以p-值也不是概率。

一种方便区别是概率还是似然的方法是,根据定义,"事件A的概率"中A只能是概率空间中的事件,换句话说,我们只能说,事件(发生)的概率是多少(因为事件具有概率结构从而刻画随机性,所以才能谈概率);而 " θ \theta θ 的似然"中的 θ \theta θ 只能是参数,比如说,参数 θ \theta θ 等于0.36时的似然是多少。
作者:Yeung Evan
链接:https://www.zhihu.com/question/54082000/answer/145495695
来源:知乎

似然函数的详细分析——其本质意义

已知事件B发生的情况下,事件A发生的概率写作: P ( A ∣ B ) P(A|B) P(AB)
利用贝叶斯定理:
P ( B ∣ A ) = P ( A ∣ B ) P ( B ) P ( A ) P(B|A) =\dfrac{P(A|B)P(B)}{P(A)} P(BA)=P(A)P(AB)P(B)
逆向构造似然性的方法:已知事件A发生,运用似然函数 L ( θ ∣ A ) L(\theta|A) L(θA) 估计参数 θ \theta θ 的可能性(即 P ( B ) P(B) P(B) 发生的概率)。
越接近于其最大值,则参数 θ \theta θ 越接近于我们的期望。

似然函数并不要求归一性: ∑ n = 1 N P ( A ∣ B = b ) ≠ 1 \sum_{n=1}^N{P(A|B=b)}\neq 1 n=1NP(AB=b)̸=1 (b为B发生的概率,在一定条件下也代表了似然函数的参数 )

一个例子

投掷硬币的实验: H H H表示硬币的正面, T T T表示反面。已知 P ( H ) = 0.5 P(H) = 0.5 P(H)=0.5 P ( T ) = 0.5 P(T) = 0.5 P(T)=0.5,则投掷两次,都是正面朝上的概率是 0.25 0.25 0.25。用条件概率表示:
P ( H H ∣ p H = 0.5 ) = 0. 5 2 = 0.25 P(HH|pH = 0.5) = 0.5^2 = 0.25 P(HHpH=0.5)=0.52=0.25

在统计学中,我们关心的是在已知一系列投掷结果时,正面朝上的可能性的信息。
于是我们建立一个统计模型:假设硬币投出时,会有 p H pH pH的概率正面朝上,而有 1 − p H 1-pH 1pH的概率反面朝上。这时,条件概率可以改写成似然函数:
L ( p H = 0.5 ∣ H H ) = P ( H H ∣ p H = 0.5 ) = 0.25 L(pH = 0.5|HH) = P(HH|pH = 0.5) = 0.25 L(pH=0.5HH)=P(HHpH=0.5)=0.25

也就是说:对于取定的似然函数,在观测到两次投掷都是正面朝上时, p H = 0.5 pH = 0.5 pH=0.5 的似然性是 0.25 0.25 0.25(这并不表示当观测到两次正面朝上时 p H = 0.5 pH = 0.5 pH=0.5 的概率是 0.25 0.25 0.25)。

如果考虑 p H = 0.6 pH = 0.6 pH=0.6,那么似然函数的值也会改变。
L ( p H = 0.6 ∣ H H ) = P ( H H ∣ p H = 0.6 ) = 0.36 L(pH = 0.6|HH) = P(HH|pH = 0.6) = 0.36 L(pH=0.6HH)=P(HHpH=0.6)=0.36

注意到似然函数的值变大了。这说明,如果参数 p H pH pH 的取值变成 0.6 0.6 0.6的话,结果观测到连续两次正面朝上的概率要比假设 p H = 0.5 pH = 0.5 pH=0.5时更大。也就是说,参数 p H pH pH取成 0.6 0.6 0.6 要比取成 0.5 0.5 0.5 更有说服力,更为“合理”。

总之,似然函数的重要性不是它的具体取值,而是当参数 变化时似然函数到底变小还是变大。
对同一个似然函数,如果存在一个参数值,使得它的函数值达到最大的话,那么这个值就是最为“合理”的参数值。

在这个例子中,似然函数实际上等于: L ( p H = θ ∣ H H ) = P ( H H ∣ p H = θ ) = θ 2 , L(pH = \theta|HH)=P(HH|pH=\theta)=\theta^2, L(pH=θHH)=P(HHpH=θ)=θ2其中: 0 ≤ p H ≤ 1 0\leq pH\leq1 0pH1

如果取 p H = 1 pH = 1 pH=1,那么似然函数达到最大值 1 1 1。也就是说,当连续观测到两次正面朝上时,假设硬币投掷时正面朝上的概率为 1 1 1是最合理的。

类似地,如果观测到的是三次投掷硬币,前两次正面朝上,第三次反面朝上,那么似然函数将会是: L ( p H = θ ∣ H H T ) = P ( H H T ∣ p H = θ ) = θ 2 ( 1 − θ ) , 其 中 L(pH = \theta|HHT)=P(HHT|pH=\theta)=\theta^2(1-\theta) ,其中 L(pH=θHHT)=P(HHTpH=θ)=θ2(1θ)
T T T表示反面朝上, 0 ≤ p H ≤ 1 0\leq pH\leq1 0pH1
这时候,似然函数的最大值将会在 p H = 2 3 pH=\dfrac23 pH=32 的时候取到。也就是说,当观测到三次投掷中前两次正面朝上而后一次反面朝上时,估计硬币投掷时正面朝上的概率 p H = 2 3 pH=\dfrac23 pH=32是最合理的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值