自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(28)
  • 收藏
  • 关注

原创 欢迎使用CSDN-markdown编辑器

欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦:Markdown和扩展Markdown简洁的语法代码块高亮图片链接和图片上传LaTex数学公式UML序列图和流程图离线写博客导入导出Markdown文件丰富的快捷键快捷键加粗 Ctrl + B 斜体 Ctrl + I 引用 Ctrl

2016-08-10 21:48:04 330

转载 数字图像处理、计算机视觉和计算机图形学关系

著作权归作者所有。 商业转载请联系作者获得授权,非商业转载请注明出处。 作者:Vinjn张静 链接:http://www.zhihu.com/question/20672053/answer/15854031 来源:知乎Computer Graphics,简称 CG 。输入的是对虚拟场景的描述,通常为多边形数组,而每个多边形由三个顶点组成,每个顶点包括三维坐标、贴图坐标、rgb 颜色等。输出

2015-11-17 09:31:39 1641

原创 思维百态-1

金融:本质上是货币的流通。 股票:有价证券 股票价格的改变,不是东西价格的改变,而是对东西价格改变的认识的改变。股票的价格是某种东西的期望值。比如果树,果树的价格是人们对果树未来所结果实价格的现在折现,果树价格的改变不是果树或者果实价格的改变,而是人们对于果实或者果树未来价格改变的认识的改变。创业与创新承诺 可以承诺怎么做,不可承诺怎么想 前者是靠意志达成的,后者是不能的 所以,我要养你一

2015-11-14 11:24:47 452

转载 遗传算法

一般来说,我们解决问题的过程就是寻找可行解的过程,当然可行解必须满足一定的约束条件,但是对很多问题来说,搜索可行解的过程非常复杂以至于都不知道去哪里搜索或不知道搜索的下一步该怎么走,在多项式时间内找不到合理的解,因此只能对应一个NDTM(Nondeterministic Turing Machine)来解决,即:对于下一步的动作,不知道确切的行为,只能尝试很多种方案才能够得出一个答案,即NP问题。那

2015-11-05 16:43:00 991

转载 HMM学习笔记_1(从一个实例中学习DTW算法)

DTW为(Dynamic Time Warping,动态时间归准)的简称。应用很广,主要是在模板匹配中,比如说用在孤立词语音识别,计算机视觉中的行为识别,信息检索等中。可能大家学过这些类似的课程都看到过这个算法,公式也有几个,但是很抽象,当时看懂了但不久就会忘记,因为没有具体的实例来加深印象。 这次主要是用语音识别课程老师上课的一个题目来理解DTW算法。  首先还是介绍下DTW的思想:假设现在有

2015-11-05 08:57:09 421

转载 隐马尔科夫模型

1、马尔科夫过程 马尔可夫过程的定义:⑴设 是一个随机过程,如果在 在 时刻所处的状态为已知时,与它在时刻 之前所处的状态无关,则称具有马尔可夫性。 ⑵设 的状态空间为S,如果对于任意的n≧2,任意的 ,在条件 下,X(tn)的条件分布函数恰好等于在条件 下的条件分布函数,即则称 为马尔可夫过程。2、马尔科夫链 马尔可夫链(Markov Chain),描述了一种

2015-11-04 21:47:29 687

转载 EM-期望最大化算法

em算法编辑 最大期望算法(Expectation Maximization Algorithm,又译期望最大化算法),是一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估计。 中文名 em算法 外文名 Expectation Maximization Algorithm 别 名 期望最大化算法 用 于 含有隐变量的概率参数模型

2015-11-04 21:01:55 2814

转载 贝叶斯决策

1、先验概率下面先讨论一个例子——癌细胞的识别,以此说明解决问题的过程。假设每个要识别的细胞已作过预处理,并抽取出了d个特征描述量,用一个d维的特征向量X表示,识别的目的是要依据该X向量将细胞划分为正常细胞或者异常细胞。这里我们用ω1表示是正常细胞,而ω2则属于异常细胞。   类别的状态是一个随机变量,而某种状态出现的概率是可以估计的。概率的估计包含两层含义,一是由统计资料表明,正常细胞与异常细胞

2015-11-04 20:08:38 968

转载 参数估计(续)

特征维度问题高维数据中包含了大量的冗余并隐藏了重要关系的相关性,降维的目的就是消除冗余,减少被处理数据的数量。为了提高统计模式识别的正确识别率,人们通常需要采集数量巨大的数据特征,使得原始空间或输入空间的维数可能高达几千维或万维。如果直接在输入空间上进行分类器训练,就可能带来两个棘手的问题:(1)很多在低维空间具有良好性能的分类算法在计算上变得不可行;(2)在训练样本容量一定的前提下,特征维数的

2015-11-04 19:40:20 484

转载 统计模式识别的原理与方法

1 统计模式识别的原理与方法简介  1.1 模式识别  什么是模式和模式识别? 广义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可以称之为模式;狭义地说,模式是通过对具体的个别事物进行观测所得到的具有时间和空间分布的信息;把模式所属的类别或同一类中模式的总体称为模式类(或简称为类)]。而“模式识别”则是在某些一定量度或观测基础上把待识模式划分到各自的模式类中去。  模

2015-11-04 16:30:37 11402 1

转载 模式识别综述

一、引言 模式识别是研究如何让机器能观察环境,并从环境背景中将感兴趣的目标提取分离、分类的过程;给定一个模式,它的识别、分类包含以下两方面的任务:指导性分类及非指导性分类。所以识别问题基本等价于分类、分组的问题,类(组)的概念是有设计者指定的或有算法依据数据在一定的相似性准则下建立的。模式识别应用的领域越来越广,从生物学、数据挖掘、文档分类、文档图像分析、工业自动化、多媒体数据库检

2015-11-04 16:26:03 3793

原创 缓冲区

计算机内存中为什么要设计缓冲区,内存和硬盘直接读写,不是更简洁,更快速吗? 答案是否定的,实践证明,设计缓冲区会使文件的读写速度百倍的上升。因为复用。内存的速度非常快,是硬盘速度的几个数量级,内存之间进行读写速度非常的快,这是设计缓冲区的基础。

2015-11-02 18:53:23 297

原创 生活妙想

抽象和具体:很多时候,当一个人描述某事物总是抽象泛泛的描述,很可能他在说谎;当一个人很具体的描述一事物,很可能他说的是真话。

2015-11-02 18:47:10 348

转载 ”小王子“有感

什么是驯养,驯养就是建立感情连接。你很孤独,空虚,因为你没有驯养过任何东西,没有东西对于你来说是独一无二的,就像满山遍野的鲜花,他们对于你来说都是一样的,没有任何不同。你驯养某事物,你就要对它负责,因为它对于你将会变得不同。 告诉你一个秘密:只有用心才能看见,事物的本质眼睛是看不见的。 正是我为我的玫瑰话费的时光,才使得我的玫瑰变得如此重要。 仪式是一件很容易被忽视的东西,什么是仪式?就是定一

2015-11-02 18:42:39 300

转载 机器学习、模式识别与数据挖掘之间的关系

数据挖掘和机器学习的区别和联系,周志华有一篇很好的论述《机器学习与数据挖掘》可以帮助大家理解。数据挖掘受到很多学科领域的影响,其中数据库、机器学习、统计学无疑影响最大。简言之,对数据挖掘而言,数据库提供数据管理技术,机器学习和统计学提供数据分析技术。由于统计学往往醉心于理论的优美而忽视实际的效用,因此,统计学界提供的很多技术通常都要在机器学习界进一步研究,变成有效的机器学习算法之后才能再进入数据挖掘

2015-10-31 09:51:06 1577

原创 反思

最近回家了一周,回学校之后又颓废了一周,这段生活甚是可怜,推胸顿足,无济于事,昏昏庸庸,等待唤醒。生活和学习完全混乱,没了学习的激情,忘了生活的意义,处于老年与儿童的边缘,死死沉沉不可终日。欲以挣脱,甚觉浑身无力,心有余而力不足,欲想劳累以淋漓尽致,幻失体育精神,终日偷闲麻木,无所事事,只待丫头叫醒。

2015-10-31 09:38:17 287

原创 心得笔记

不安全感:也许比野心有着更大的动力,它让人时刻保持清醒,时刻存在危机感。 用心:每天都在忙碌,看似一分钟都没有浪费,但是却没有成果。人的时间很少,未来,时间将成为最重要的资源。用心使用自己的每一分钟。一旦你意识到不对,立即改正,就不会晚,就怕你犹豫不决。犹豫不决是时间最大的敌人,强有力的执行是效率最好的保证。

2015-10-24 19:22:24 305

原创 考研杂谈

因为之前很多学弟学妹(山大)问我关于考研的事,考研要注意的事项,对他们说的很乱,现在想总结一下,希望这对学弟学妹有所帮助,所说的都是我的一己之言,不可全信。考研辅导班专业选择报考学校考研辅导班 (1)、数学 就我个人而言,报数学考研辅导班是没有必要的,不是因为我的数学基础好,而是我根据我的个人情况,报数学考研辅导班对我作用不大。我的个人情况:一、辅导班很贵,每年的数学大纲基本上没有变化,

2015-10-24 10:11:13 569

转载 云栖大会马云演讲笔记

马云:钱不是靠省出来的,有时候是靠投资、花钱和享受。 BAT三座大山,并不是把地主斗死了,农民才能富起来。 有人说,互联网的发展使传统经济没有了机会,不对,有没有机会,应该看你是不是能够行动起来,看你行动的速度有没有这么的快,看你有没有这么样的梦想,看你能不能把你的梦想变成真的。 不是要自己向别人要钱,而是向市场要钱,只有盈利了才能持久,只有让别人看到你盈利了才能持久。 这个时代讲究的不是肌

2015-10-15 15:31:41 581

转载 最大似然估计(转载)

引言: 如果我们知道样本(数据)所服从的概率分布的模型,而不知道该模型中的参数,例如:高斯模型的参数:均值u,及方差sigma。最大似然估计就是用来估计模型参数的统计学方法. 如何估计: 我们利用样本,概率分布模型来估计,我们从总体中能够获得这些样本,为什么能获得,应该是获得这样的样本组合的概率最大。这样就将参数估计问题转化到最优化问题了。求最值,最简单的方法就是求导数,令导数为零

2015-10-14 19:39:43 682

原创 图数据挖掘-绪论

这是网络数据挖掘的第二部分的绪论,这部分由中国科学院计算技术研究所的沈老师讲授,他用风趣幽默的语言再加上故事性的讲授,不仅让整个课堂活跃了起来,也让我们收获了颇多。写博客希望将自己的学到的东西记录下来,为以后方便记忆和查找,另外,督促学习。复杂系统人是一切关系的总和。 整体是其各部分的总和以及各部分之间的交互。 儿童提出的问题叫科学;专家提出的问题叫技术。 什么是网络? 由通过多种交互关系

2015-10-13 18:37:24 379 1

原创 随心杂谈

回首之前的生活、学习,主体方向没有大的波动,一切都在向好的方向发展,看似一切都在计划之中,但是,我的计划真的不是很清晰,现在回想起来之前的路子,更像是自己的运气好,而不是跟着自己的计划来,虽然最后的结果都是那么的令人满意,现在仔细的回味一下,心有余悸,后背发凉。 是时候该静下来,重温一下之前的生活学习,总结一下,哪些自己做的比较好,继续保持;哪些自己做的不好,反省改正。 写这篇博客,希望缕清自己

2015-10-13 11:10:52 383

转载 奥卡姆剃刀

奥卡姆剃刀(Occam’s Razor, Ockham’s Razor),又称“奥坎的剃刀”,是由14世纪逻辑学家、圣方济各会修士奥卡姆的威廉(William of Occam,约1285年至1349年)提出,他在《箴言书注》2卷15题说“切勿浪费较多东西,去做‘用较少的东西,同样可以做好的事情’。简单点说,便是:be simple。

2015-10-08 16:56:19 426

转载 分类与聚类 监督学习与无监督学习

1、Classification (分类),对于一个 classifier ,通常需要你告诉它“这个东西被分为某某类”这样一些例子,理想情况下,一个 classifier 会从它得到的训练集中进行“学习”,从而具备对未知数据进行分类的能力,这种提供训练数据的过程通常叫做 supervised learning (监督学习), 2、Clustering(聚类),简单地说就是把相似的东西分到一组,聚类

2015-10-08 16:55:39 1223

转载 分类与聚类 监督学习与无监督学习

1、Classification (分类),对于一个 classifier ,通常需要你告诉它“这个东西被分为某某类”这样一些例子,理想情况下,一个 classifier 会从它得到的训练集中进行“学习”,从而具备对未知数据进行分类的能力,这种提供训练数据的过程通常叫做 supervised learning (监督学习), 2、Clustering(聚类),简单地说就是把相似的东西分到一组,聚类

2015-10-08 16:53:36 769

原创 决策树

决策树的构造方法:每次选择一个好的特征作为分裂点,即分类条件。 好的特征:信息增益量大的属性 信息增益:用来衡量一个属性区分数据样本的能力

2015-10-08 16:46:53 273

原创 文章标题

人工智能的研究主要有三个方面:extrospection、introspection、simulation。 extrospection:研究人类大脑的工作机制,让计算机”实现“人类大脑的功能,比如计算神经学。 introspection:将人已有的知识技能输入计算机,从而“再现”人的智能,比如专家系统。 simulation:将人智能化行为模型化,利用模型”再现“人的智能,比如机器学习。

2015-10-08 14:52:08 286

原创 欢迎使用CSDN-markdown编辑器

机器学习正在悄无声息的影响着我们的生活,比如数码相机中的人脸识别、互联网搜索、手写识别、在线广告、机器翻译、推荐系统、垃圾邮件过滤等等

2015-10-08 14:40:39 232

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除