【题目描述】
一个旅行者有一个最多能装 M 公斤的背包,现在有 n 件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2,...,Cn,求旅行者能获得最大总价值。
【输入】
第一行:两个整数,M(背包容量,M≤200)和N(物品数量,N≤30);
第2..N+1行:每行二个整数Wi,Ci,表示每个物品的重量和价值。
【输出】
仅一行,一个数,表示最大总价值。
【输入样例】
10 4
2 1
3 3
4 5
7 9
【输出样例】
12
这道题有两种方法,一种是二维数组,一种是把二维数组状态优化成一维数组:
1.二维数组方法:先确定dp[i][j]存的为面对第i件物品时背包容量j的情况下的最大价值,然后打表,横轴为背包容量从1-m,纵轴为第几个物品,从1-n。然后写出递推式
(1) j < w[i]的情况(放不下):
这时候背包容量不足以放下第 i 件物品,只能选择不拿:
dp[i][j] = dp[i-1][j]
(2) j >= w[i]的情况:
这时背包容量可以放下第 i 件物品,我们就要考虑拿这件物品是否能获取更大的价值。
-
如果拿取:
dp[i][j] = dp[i-1][j-w[i]] + v[i]这里的
dp[i-1][j-w[i]]指的就是考虑了 i-1 件物品,背包容量要减去当前取的w[i]时的最大价值。 -
如果不拿:
dp[i][j] = dp[i-1][j],同 (1)
究竟是拿还是不拿,自然是比较这两种情况哪种价值最大。
2.一维数组方式:我们会发现i永远只和i-1有关系,与i-2 i-3等等均无关,所以我们可以把dp数组的第一维去掉,然后我们要倒着循环背包容量,即从背包容量最大时开始循环,因为正着会污染前面的数据造成i无法使用i-1
/*
//信息学奥赛一本通1267:【例9.11】01背包问题
#include <iostream>
using namespace std;
int w[35],val[35];//w为每件物品的重量,val为每件物品的价值
int dp[35][201];//表示面对第i件物品时背包容量j的情况下的最大价值
int main(){
int m,n;
cin>>m>>n;
for(int i=1;i<=n;i++){
cin>>w[i]>>val[i];
}
for(int i=1;i<=n;i++){//循环物品
for(int j=1;j<=m;j++){//循环背包容量
if(j>=w[i]){//当背包容量j大于等于物品i的重量
dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+val[i]);//物品i拿与不拿的价值取最大值,如果拿,剩余容量拿到上一个物品的最大值+当前物品的价值
}
else{//背包容量j小于物品i的重量 w[i]>j
dp[i][j]=dp[i-1][j];//当前容量下拿到上一个的最大值
}
}
}
cout<<dp[n][m];
return 0;
}
*/
//信息学奥赛一本通1267:【例9.11】01背包问题 状态优化 压缩为一位数组 因为我们发现每个i只和i-1的状态有关,所以我们不需要记录所有i
#include <iostream>
using namespace std;
int w[35],val[35];//w为每件物品的重量,val为每件物品的价值
int dp[201];//表示面对第i件物品时背包容量j的情况下的最大价值
int main(){
int m,n;
cin>>m>>n;
for(int i=1;i<=n;i++){
cin>>w[i]>>val[i];
}
for(int i=1;i<=n;i++){//循环物品
for(int j=m;j>=1;j--){//循环背包容量 但需要从大到小 因为i需要用到i-1的值 从小到大i-1的值会改变被覆盖掉,就被污染了
if(j>=w[i]){//当背包容量j大于等于物品i的重量
dp[j]=max(dp[j],dp[j-w[i]]+val[i]);//物品i拿与不拿的价值取最大值,如果拿,剩余容量拿到上一个物品的最大值+当前物品的价值
}
}
}
cout<<dp[m];
return 0;
}

1326

被折叠的 条评论
为什么被折叠?



