【书生大模型实战营】基础岛 第4关 InternLM + LlamaIndex RAG 实践

【书生大模型实战营】基础岛 第4关 InternLM + LlamaIndex RAG 实践

学习任务

基于 LlamaIndex 构建自己的 RAG 知识库,寻找一个问题 A 在使用 LlamaIndex 之前InternLM2-Chat-1.8B模型不会回答,借助 LlamaIndex 后 InternLM2-Chat-1.8B 模型具备回答 A 的能力

前置知识

正式介绍检索增强生成(Retrieval Augmented Generation,RAG)技术以前,大家不妨想想为什么会出现这样一个技术。 给模型注入新知识的方式,可以简单分为两种方式,一种是内部的,即更新模型的权重,另一个就是外部的方式,给模型注入格外的上下文或者说外部信息,不改变它的的权重。 第一种方式,改变了模型的权重即进行模型训练,这是一件代价比较大的事情,大语言模型具体的训练过程,可以参考InternLM2技术报告。第二种方式,并不改变模型的权重,只是给模型引入格外的信息。类比人类编程的过程,第一种方式相当于你记住了某个函数的用法,第二种方式相当于你阅读函数文档然后短暂的记住了某个函数的用法。

在这里插入图片描述

对比两种注入知识方式,第二种更容易实现。RAG正是这种方式。它能够让基础模型实现非参数知识更新,无需训练就可以掌握新领域的知识。本次课程选用了LlamaIndex框架。LlamaIndex 是一个上下文增强的 LLM 框架,旨在通过将其与特定上下文数据集集成,增强大型语言模型(LLMs)的能力。它允许您构建应用程序,既利用 LLMs 的优势,又融入您的私有或领域特定信息。

RAG 效果比对
如图所示,由于xtuner是一款比较新的框架, InternLM2-Chat-1.8B 训练数据库中并没有收录到它的相关信息。左图中问答均未给出准确的答案。右图未对 InternLM2-Chat-1.8B 进行任何增训的情况下,通过 RAG 技术实现的新增知识问答。

环境、模型准备

配置基础环境

这里以在 Intern Studio 服务器上部署LlamaIndex为例。

首先,打开 Intern Studio 界面,点击 创建开发机 配置开发机系统。

填写 开发机名称 后,点击 选择镜像 使用 Cuda11.7-conda 镜像,然后在资源配置中,使用 30% A100 * 1 的选项,然后立即创建开发机器。

在这里插入图片描述

进入开发机后,创建新的conda环境,命名为 llamaindex,在命令行模式下运行:

conda create -n llamaindex python=3.10
复制完成后,在本地查看环境。

conda env list
结果如下所示。

conda environments:

base * /root/.conda
llamaindex /root/.conda/envs/llamaindex
运行 conda 命令,激活 llamaindex 然后安装相关基础依赖 python 虚拟环境:

conda activate llamaindex
conda install pytorch2.0.1 torchvision0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia
安装python 依赖包

pip install einops
pip install protobuf
环境激活后,命令行左边会显示当前(也就是 llamaindex )的环境名称,如下图所示:

2.2 安装 Llamaindex
安装 Llamaindex和相关的包

conda activate llamaindex
pip install llama-index0.10.38 llama-index-llms-huggingface0.2.0 "transformers[torch]4.41.1" "huggingface_hub[inference]0.23.1" huggingface_hub0.23.1 sentence-transformers2.7.0 sentencepiece==0.2.0
2.3 下载 Sentence Transformer 模型
源词向量模型 Sentence Transformer:(我们也可以选用别的开源词向量模型来进行 Embedding,目前选用这个模型是相对轻量、支持中文且效果较好的,同学们可以自由尝试别的开源词向量模型) 运行以下指令,新建一个python文件

cd ~
mkdir llamaindex_demo
mkdir model
cd ~/llamaindex_demo
touch download_hf.py
打开download_hf.py 贴入以下代码

import os

设置环境变量

os.environ[‘HF_ENDPOINT’] = ‘https://hf-mirror.com’

下载模型

os.system(‘huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/model/sentence-transformer’)
然后,在 /root/llamaindex_demo 目录下执行该脚本即可自动开始下载:

cd /root/llamaindex_demo
conda activate llamaindex
python download_hf.py
更多关于镜像使用可以移步至 HF Mirror 查看。

下载 NLTK 相关资源

我们在使用开源词向量模型构建开源词向量的时候,需要用到第三方库 nltk 的一些资源。正常情况下,其会自动从互联网上下载,但可能由于网络原因会导致下载中断,此处我们可以从国内仓库镜像地址下载相关资源,保存到服务器上。 我们用以下命令下载 nltk 资源并解压到服务器上:

cd /root
git clone https://gitee.com/yzy0612/nltk_data.git --branch gh-pages
cd nltk_data
mv packages/* ./
cd tokenizers
unzip punkt.zip
cd …/taggers
unzip averaged_perceptron_tagger.zip
之后使用时服务器即会自动使用已有资源,无需再次下载

LlamaIndex HuggingFaceLLM

运行以下指令,把 InternLM2 1.8B 软连接出来

cd ~/model
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b/ ./
运行以下指令,新建一个python文件

cd ~/llamaindex_demo
touch llamaindex_internlm.py
打开llamaindex_internlm.py 贴入以下代码

from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.llms import ChatMessage
llm = HuggingFaceLLM(
model_name=“/root/model/internlm2-chat-1_8b”,
tokenizer_name=“/root/model/internlm2-chat-1_8b”,
model_kwargs={“trust_remote_code”:True},
tokenizer_kwargs={“trust_remote_code”:True}
)

rsp = llm.chat(messages=[ChatMessage(content=“xtuner是什么?”)])
print(rsp)
之后运行

conda activate llamaindex
cd ~/llamaindex_demo/
python llamaindex_internlm.py
结果为:【无RAG】(回答的效果并不好,并不是我们想要的xtuner。)
在这里插入图片描述

LlamaIndex RAG

安装 LlamaIndex 词嵌入向量依赖

conda activate llamaindex
pip install llama-index-embeddings-huggingface llama-index-embeddings-instructor
运行以下命令,获取知识库

cd ~/llamaindex_demo
mkdir data
cd data
git clone https://github.com/InternLM/xtuner.git
mv xtuner/README_zh-CN.md ./
运行以下指令,新建一个python文件

cd ~/llamaindex_demo
touch llamaindex_RAG.py
打开llamaindex_RAG.py贴入以下代码

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings

from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM

#初始化一个HuggingFaceEmbedding对象,用于将文本转换为向量表示
embed_model = HuggingFaceEmbedding(
#指定了一个预训练的sentence-transformer模型的路径
model_name=“/root/model/sentence-transformer”
)
#将创建的嵌入模型赋值给全局设置的embed_model属性,
#这样在后续的索引构建过程中就会使用这个模型。
Settings.embed_model = embed_model

llm = HuggingFaceLLM(
model_name=“/root/model/internlm2-chat-1_8b”,
tokenizer_name=“/root/model/internlm2-chat-1_8b”,
model_kwargs={“trust_remote_code”:True},
tokenizer_kwargs={“trust_remote_code”:True}
)
#设置全局的llm属性,这样在索引查询时会使用这个模型。
Settings.llm = llm

#从指定目录读取所有文档,并加载数据到内存中
documents = SimpleDirectoryReader(“/root/llamaindex_demo/data”).load_data()
#创建一个VectorStoreIndex,并使用之前加载的文档来构建索引。

此索引将文档转换为向量,并存储这些向量以便于快速检索。

index = VectorStoreIndex.from_documents(documents)

创建一个查询引擎,这个引擎可以接收查询并返回相关文档的响应。

query_engine = index.as_query_engine()
response = query_engine.query(“xtuner是什么?”)

print(response)
之后运行

conda activate llamaindex
cd ~/llamaindex_demo/
python llamaindex_RAG.py
结果为:【借助RAG技术后,就能获得我们想要的答案了。】
在这里插入图片描述

LlamaIndex web

运行之前首先安装依赖

pip install streamlit==1.36.0
运行以下指令,新建一个python文件

cd ~/llamaindex_demo
touch app.py
打开app.py贴入以下代码

import streamlit as st
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM

st.set_page_config(page_title=“llama_index_demo”, page_icon=“🦜🔗”)
st.title(“llama_index_demo”)

初始化模型

@st.cache_resource
def init_models():
embed_model = HuggingFaceEmbedding(
model_name=“/root/model/sentence-transformer”
)
Settings.embed_model = embed_model

llm = HuggingFaceLLM(
    model_name="/root/model/internlm2-chat-1_8b",
    tokenizer_name="/root/model/internlm2-chat-1_8b",
    model_kwargs={"trust_remote_code": True},
    tokenizer_kwargs={"trust_remote_code": True}
)
Settings.llm = llm

documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()

return query_engine

检查是否需要初始化模型

if ‘query_engine’ not in st.session_state:
st.session_state[‘query_engine’] = init_models()

def greet2(question):
response = st.session_state[‘query_engine’].query(question)
return response

Store LLM generated responses

if “messages” not in st.session_state.keys():
st.session_state.messages = [{“role”: “assistant”, “content”: “你好,我是你的助手,有什么我可以帮助你的吗?”}]

# Display or clear chat messages

for message in st.session_state.messages:
with st.chat_message(message[“role”]):
st.write(message[“content”])

def clear_chat_history():
st.session_state.messages = [{“role”: “assistant”, “content”: “你好,我是你的助手,有什么我可以帮助你的吗?”}]

st.sidebar.button(‘Clear Chat History’, on_click=clear_chat_history)

Function for generating LLaMA2 response

def generate_llama_index_response(prompt_input):
return greet2(prompt_input)

User-provided prompt

if prompt := st.chat_input():
st.session_state.messages.append({“role”: “user”, “content”: prompt})
with st.chat_message(“user”):
st.write(prompt)

Gegenerate_llama_index_response last message is not from assistant

if st.session_state.messages[-1][“role”] != “assistant”:
with st.chat_message(“assistant”):
with st.spinner(“Thinking…”):
response = generate_llama_index_response(prompt)
placeholder = st.empty()
placeholder.markdown(response)
message = {“role”: “assistant”, “content”: response}
st.session_state.messages.append(message)
之后运行

streamlit run app.py

在这里插入图片描述

在这里插入图片描述

  • 4
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
模型+RAG(Retrieval-Augmented Generation)是一种结合了检索和生成的方法,用于实现数据采集。具体步骤如下: 1. 数据收集:首先需要收集大量的原始数据,可以是文本、图像、音频等形式的数据。这些数据可以从互联网、数据库、文档等多个渠道获取。 2. 数据预处理:对收集到的原始数据进行预处理,包括数据清洗、去重、标注等操作。这一步骤旨在提高数据的质量和准确性,为后续的模型训练做准备。 3. 模型训练:使用大模型进行训练,可以选择使用预训练的语言模型(如GPT)或自定义的模型。在训练过程中,可以采用生成式对抗网络(GAN)等方法来增强模型的生成能力。 4. 检索模块构建:为了提高生成结果的准确性和相性,需要构建一个检索模块。该模块可以使用传统的信息检索技术,如倒排索引、向量检索等,也可以使用深度学习方法,如BERT、Dense Retrieval等。 5. 数据采集:利用构建好的检索模块,对用户提出的问题或需求进行检索,获取与之相的数据。可以根据检索结果的相性进行排序,选择最相的数据进行生成。 6. 数据生成:基于检索到的数据,使用大模型进行生成。可以采用生成式模型,根据检索到的数据进行文本、图像等内容的生成。生成的结果可以根据需求进行进一步的处理和优化。 7. 结果评估:对生成的结果进行评估,可以使用人工评估或自动评估的方式。评估指标可以包括生成结果的准确性、流畅性、相性等。 8. 迭代优化:根据评估结果,对模型和检索模块进行优化和调整。可以通过增加训练数据、调整模型参数、改进检索算法等方式来提升系统的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值