论文阅读笔记——【RFM】Representative Forgery Mining for Fake Face Detection

本文介绍了CVPR2021的一篇论文,研究了基于注意力的数据增强方法——代表性伪造挖掘(RFM)。RFM通过伪造注意图(FAM)和可疑伪造擦除(SFE)来引导检测器关注伪造区域,从而提高假人脸检测性能。实验表明,RFM可以帮助检测器在有限的伪造区域外找到更具代表性的伪造特征,提升了基于CNN的检测器的检测性能,尤其是在处理少量技术伪造的假人脸时表现突出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Representative Forgery Mining for Fake Face Detection

abstract

尽管基于卷积神经网络(CNN)的普通检测器在假人脸检测上取得了令人满意的性能,但我们观察到检测器倾向于在有限的人脸区域内寻找伪造这表明检测器对伪造的理解不足。因此,我们提出了一种

RFM模型是一种常用的客户价值分析模型,通过对客户的最近一次购买时间(Recency)、购买频率(Frequency)和购买金额(Monetary)进行评估,将客户分为不同的价值层次,从而制定不同的营销策略。 在Python中,我们可以使用Pandas和Numpy等库进行RFM模型的分析。以下是一个简单的RFM模型分析步骤: 1. 数据预处理:将原始数据导入Pandas DataFrame中,并对数据进行清洗和转换。 2. 计算RFM指标:通过对每个客户的购买时间、频率和金额进行计算,得到每个客户的RFM指标。 3. 分组划分:将客户按照RFM指标进行分组,一般采用分位数法,将客户分为高、中、低三个层次。 4. 客户价值评估:根据客户的RFM组合,对客户进行价值评估,制定相应的营销策略。 下面是一个简单的RFM模型分析代码示例: ``` import pandas as pd import numpy as np # 1. 数据预处理 df = pd.read_csv('customer_data.csv') df['date'] = pd.to_datetime(df['date']) # 2. 计算RFM指标 today = pd.to_datetime('today') df_rfm = df.groupby('customer_id').agg({ 'date': lambda x: (today - x.max()).days, 'customer_id': 'count', 'amount': 'sum' }) df_rfm.rename(columns={'date': 'recency', 'customer_id': 'frequency', 'amount': 'monetary'}, inplace=True) # 3. 分组划分 quantiles = df_rfm.quantile(q=[0.25, 0.5, 0.75]) def r_score(x): if x <= quantiles['recency'][0.25]: return 4 elif x <= quantiles['recency'][0.5]: return 3 elif x <= quantiles['recency'][0.75]: return 2 else: return 1 def fm_score(x, c): if x <= quantiles[c][0.25]: return 1 elif x <= quantiles[c][0.5]: return 2 elif x <= quantiles[c][0.75]: return 3 else: return 4 df_rfm['r_score'] = df_rfm['recency'].apply(lambda x: r_score(x)) df_rfm['f_score'] = df_rfm['frequency'].apply(lambda x: fm_score(x, 'frequency')) df_rfm['m_score'] = df_rfm['monetary'].apply(lambda x: fm_score(x, 'monetary')) df_rfm['rfm_score'] = df_rfm['r_score'] * 100 + df_rfm['f_score'] * 10 + df_rfm['m_score'] # 4. 客户价值评估 def label_customer(x): if x >= 111 and x <= 444: return '重要保持客户' elif x >= 445 and x <= 754: return '重要发展客户' elif x >= 755 and x <= 944: return '一般保持客户' else: return '一般挽留客户' df_rfm['customer_label'] = df_rfm['rfm_score'].apply(lambda x: label_customer(x)) ``` 以上代码中,我们先将原始数据读入Pandas DataFrame中,然后计算出每个客户的RFM指标,并按照分位数法进行分组划分,最后根据客户的RFM组合确定其价值层次。 通过RFM模型的分析,我们可以更好地理解客户的行为习惯和价值特征,从而制定更加精准有效的营销策略。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值