有监督、半监督、无监督、弱监督、自监督

这篇博客探讨了不同类型的机器学习方法,包括有监督学习,利用标记数据进行训练;无监督学习,依赖于未标记数据发现模式;半监督学习,结合有标签和无标签数据;自监督学习,通过内在表示学习;以及弱监督学习,处理噪声标签的数据。这些方法在现代人工智能中扮演关键角色,特别是在深度学习的上下文中。
摘要由CSDN通过智能技术生成

1、有监督:用有标签的数据训练;
2、无监督:用无标签的数据训练;
3、半监督:利用数据分布上的模型假设建立学习器对未标签样例进行标签。通常是两阶段的训练,先用(较小规模的)有标签数据训练一个Teacher模型,再用这个模型对(较大规模的)无标签数据预测伪标签,作为Student模型的训练数据;
4、自监督:在无标注数据上训练,通过一些方法让模型学习到数据的inner representation,再接下游任务,例如加一个mlp作为分类器等。但接了下游任务之后还是需要在特定的有标签数据上finetune,只是有时候可以选择把前面的层完全固定,只finetune后面接的网络的参数。自监督数据监督来源于数据本身,例如通过拼图方式构造。
5、弱监督:用包含噪声的有标签数据训练。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值