sinat_39307513的博客

私信 关注
花花花哇_
码龄4年
  • 83,916
    被访问量
  • 19
    原创文章
  • 125,805
    作者排名
  • 12
    粉丝数量
  • 于 2017-06-26 加入CSDN
获得成就
  • 获得16次点赞
  • 内容获得69次评论
  • 获得63次收藏
荣誉勋章
兴趣领域
  • #人工智能
    #深度学习
TA的专栏
  • python自动化办公
  • 目标检测
    8篇
  • 代码编程
    11篇
  • 工作
    2篇
  • 机器学习
    1篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

pytorch问题

pytorch问题:1、RuntimeError: DataLoader worker (pid(s) 31615, 31618, 31619) exited unexpectedly解决:设置num_workers=0
原创
2阅读
0评论
0点赞
发布博客于 7 天前

tensorflow-trt2onnx:pb文件转onnx

出现错误1、ValueError: StridedSlice: only strides=1 is supported解决方法:加上--opset 10例如: python3 -m tf2onnx.convert --graphdef ×××.pb --output ×××.onnx --inputs images:0 --outputs Softmax:0--opset 10
原创
32阅读
1评论
0点赞
发布博客于 27 天前

pip install onnx_tf

1.apt-get install -y wget2.wget https://github.com/onnx/onnx-tensorflow/archive/master.zip3.unzip master.zip4.cd onnx-tensorflow-master5.pip install -e .
原创
14阅读
0评论
0点赞
发布博客于 29 天前

mmdetection-代码

参考资料:https://heary.cn/posts/mmdetection-%E5%9F%BA%E4%BA%8EPyTorch%E7%9A%84%E5%BC%80%E6%BA%90%E7%9B%AE%E6%A0%87%E6%A3%80%E6%B5%8B%E7%B3%BB%E7%BB%9F/
原创
12阅读
0评论
0点赞
发布博客于 2 月前

mmtracking-环境搭建

MMTracking地址:https://github.com/open-mmlab/mmtracking1、根据readme中install.md按步骤安装 也可参考这篇文档 写的非常详细:https://blog.csdn.net/weixin_41010198/article/details/1122910362、可能出现的问题(1)缺少pycocotools库: 1、下载源码: https://github.com/philferr...
原创
50阅读
0评论
0点赞
发布博客于 2 月前

Tensorflow 代码问题汇总

config = tf.ConfigProto(allow_soft_placement=True)gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7)config.gpu_options.allow_growth = Truewith tf.Session(config=config) as sess: sess.run(init_op) print(sess.run(y))注意tf.s...
原创
113阅读
0评论
0点赞
发布博客于 4 月前

yolov4训练问题

can’t open label files解决方法:打开darknet/src/until.c找到函数replace_image_to_label将下述代码取消注释即可(212行)
原创
185阅读
0评论
0点赞
发布博客于 5 月前

Python3.8.1安装Tensorflow问题

在官网下载了Python3.8.1版本通过pip安装Tensorflow2.1.0版本出现“ImportError: DLL load failed: 找不到指定的模块”错误。尝试了以下解决方法(1)网上搜索Python3.8.1没有匹配的TensorFlow版本,因此尝试降python版本。稳定的python版本为3.6,但官网无法下载。选择安装python3.7.7版本。(2)...
原创
12212阅读
4评论
1点赞
发布博客于 1 年前

国内镜像下载Python文件

一、可以使用的库阿里云:http://mirrors.aliyun.com/pypi/simple/清华:https://pypi.tuna.tsinghua.edu.cn/simple/中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/华中理工大学:http://pypi.hustunique.com/山东理工大学:http://pypi.s...
转载
472阅读
0评论
0点赞
发布博客于 1 年前

运行Pytorch代码报错

1.运行Pytorch tutorial代码报错:BrokenPipeError: [Errno 32] Broken pipe该问题的产生是由于windows下多线程的问题,和DataLoader类有关解决方案:修改调用torch.utils.data.DataLoader()函数时的num_workers参数。 该参数是指在进行数据集加载时,启用的线程数目。截...
原创
307阅读
0评论
0点赞
发布博客于 2 年前

http状态码

100 Continue 继续。客户端应继续其请求 101 Switching Protocols 切换协议。服务器根据客户端的请求切换协议。只能切换到更高级的协议,例如,切换到HTTP的新版本协议 200 OK 请求成功。一般用于GET与POST请求 201 Created 已创建。成功请求并创建了新的资源 202 A...
转载
28阅读
0评论
0点赞
发布博客于 2 年前

(转)RF、GBDT、XGBoost、lightGBM原理与区别

RF、GBDT和XGBoost都属于集成学习(Ensemble Learning),集成学习的目的是通过结合多个基学习器的预测结果来改善单个学习器的泛化能力和鲁棒性。  根据个体学习器的生成方式,目前的集成学习方法大致分为两大类:即个体学习器之间存在强依赖关系、必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系、可同时生成的并行化方法;前者的代表就是Boosting,后者的代表是Bag...
转载
67阅读
0评论
0点赞
发布博客于 2 年前

几种轻量化卷积网络计算量

就近年提出的四个轻量化模型进行学习和对比,四个模型分别是:MobileNet、SqueezeNet、ShuffleNet。M表示输入特征的通道数,N表示输出特征的通道数。卷积核大小为K*K,输出特征图大小为F*F.1.普通卷积网络的计算量:K*K*M*N*F*F. 普通卷积网络的参数量:K*K*M*N2.MobileNet 采用名为 depth-wise sepa...
原创
729阅读
0评论
0点赞
发布博客于 2 年前

数据结构排序算法总结

一、插入排序1.直接插入排序(Insertion Sort)插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素...
转载
1585阅读
0评论
0点赞
发布博客于 2 年前

解决ValueError: Expected more than 1 value per channel when training, got input size [1, 256, 1, 1]

出现 ValueError: Expected more than 1 value per channel when training, got input size [1, 256, 1, 1] 问题,可能是输入批次只有一个数据点,而由于BatchNorm操作需要多于一个数据计算平均值,因此造成该错误。解决方法:在获取数据集时,将DataLoader中drop_last设置为True...
原创
7094阅读
0评论
4点赞
发布博客于 2 年前

DSOD:从零开始深度有监督学习目标检测器

DSOD:从零开始深度有监督学习目标检测器转载:https://www.cnblogs.com/0x000/p/7406385.html论文原文地址:https://arxiv.org/pdf/1708.01241Abstract摘要:        我们提出了深入的监督对象检测器(DSOD),一个框架,可以从零开始学目标探测器。艺术对象的对象的状态在很大程度上依赖于下架网络预培训...
转载
479阅读
0评论
0点赞
发布博客于 2 年前

pytorch编程

1.torch.tensor 转换为numpy:a = torch.ones(5)b = a.data.numpy()2.numpy转换为torch.tensor:import numpy as npa = np.ones(5)b = torch.from_numpy(a)np.add(a, 1, out=a) 
原创
278阅读
0评论
0点赞
发布博客于 2 年前

python 错误:ImportError: cannot import name ' ×××'解决方法

在执行python代码时,出现类似ImportError: cannot import name 'Visdom' 的错误,可能是因为以下原因:1.导入包出现错误,尝试先卸载该包,再重新导入。#卸载包pip uninstall ×××#安装包pip install ×××2.导入文件的文件顺序。尝试从最外层文件夹依次导入3.查看自己命名的文件名,与导入的库文件名...
原创
42720阅读
2评论
2点赞
发布博客于 2 年前

import __builtin__ as builtins

执行python代码时,程序自动跳入pykev_monkey_qt.py文件,显示“import __builtin__ as builtins ”无法导入,这可能是因为在导入其他自己写的文件时,有错误。检查是否文件夹中包含你所导入的.py文件。 ...
原创
777阅读
0评论
0点赞
发布博客于 2 年前

调试SSD-pytorch代码问题汇总

代码链接:https://github.com/amdegroot/ssd.pytorch1.执行demo-ssd.py,改动detection.py中49行:if scores.numel() == 0:#scores.dim()2. multibox_loss.py 中,97行“loss_c[pos] = 0” 调试过程中发现 loss_c的shape与pos的shap...
原创
4020阅读
61评论
5点赞
发布博客于 3 年前

调试SSD-pytorch代码问题汇总

代码链接:https://github.com/amdegroot/ssd.pytorch1.执行demo-ssd.py,改动detection.py中49行:if scores.numel() == 0:#scores.dim()2. multibox_loss.py 中,97行“loss_c[pos] = 0” 调试过程中发现 loss_c的shape与pos的shap...
原创
4020阅读
61评论
5点赞
发布博客于 3 年前

解决U-net上采样过程后,结合下采样信息时特征图大小不匹配问题

在U-net下采样后时,通过polling层,可能会出现这种情况,37*37feature maps 压缩成18*18大小,但在上采样过程中,利用nn.ConvTranspose2d()通常变为36*36大小的feature maps,不同大小的feature maps在进行concat时会报错。解决这种问题可以采用追加一个反卷积过程,在判断到两个过程得到的feature maps大小不...
原创
7603阅读
1评论
4点赞
发布博客于 3 年前

VS 2015 运行代码出现的问题

1.error LNK1104: VS2015无法打开"msvcprt.lib"。解决方法: 在VC的库包含目录里面,库目录 lib 添加:$(LibraryPath)2.error LNK1112: 模块计算机类型“X86”与目标计算机类型“x64”冲突解决方法:1、右键项目名,点击属性,弹出项目属性页,找到链接器----高级,修改右侧的目标计算机,选择有X64的那个选项。2、...
原创
528阅读
0评论
0点赞
发布博客于 3 年前

SSD-Tensorflow测试代码问题

本文的源码地址是https://github.com/balancap/SSD-Tensorflow1.测试代码中读取.ckpt文件错误。代码给出的checkpoints文件夹中并没有.ckpt后缀文件,而是一个.data文件和.index文件,这是由于新版saver造成的。使用:saver = tf.train.Saver(write_version=tf.train.SaverDe...
原创
575阅读
0评论
0点赞
发布博客于 3 年前

MSCNN论文解读-A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection

 多尺度深度卷积神经网络进行快速目标检测:两阶段目标检测器,与faster-rcnn相似,分为an object proposal network and an accurate detection network. 文章主要解决的是目标大小不一致的问题,尤其是对小目标的检测,通过多层次的结构,实现多尺度的目标检测。之前所使用的简单的单一尺度的目标检测器通常为了识别出图片中大小适中的目标而...
原创
1516阅读
0评论
0点赞
发布博客于 3 年前