图论复习第三章

树的概念

无圈图:不含圈的图(闭途径不等于圈,圈是点不重复的闭途径)
:连通无圈图,所有边都是割边,边数等于点数减一
:度为1的顶点
割边:去除该边,将一个连通点集分为两个连通点集,割边不在任一圈中
割点:去除该点,将一个连通点集分为两个连通点集,割点的度数大于一
偏心率:是顶点到其他顶点最长路径的长度
中心点:具有最小偏心率的点叫做中心点
半径:中心点的偏心率叫做半径
直径:所有顶点中最大的偏心率
图的中心:中心点的集合
树的性质总结
(1)树是连通无圈图
(2)边数=点数-1
(3)每条边都是割边
(4)添加任意一条边,会有一个圈
(5)每个点都是割点
(6)每棵非平凡树至少有两个度为1的顶点
(7)恰好只包含两个叶子的树是路
(8)树要么只有一个中心点,要么只有两个相邻的中心点
(9)森林的边数等于点数减去树的棵数
(10)树中任意两个顶点间有唯一的路相连(使用反证法,假设有两条路——》有圈——》不满足树的定义)

生成树

定义:图的生成子图,且是一棵树
方法:破圈法(删除有圈最小边),避圈法(对边进行排序,添加边,保证无圈)
每个连通图都包含一棵生成树
边割:对于图G的边集S,G中全体一端在S中,一端在S补中,这样的边的子集叫做边割(去除这些边后所有边被分为两部分)
:极小非空边割
余树:生成树的补图叫做余树,余树不包含G中的键
性质
(1)T为G的一棵生成树,e为G中不属于T的边,则T+e含有唯一的圈
(2)T为G的一棵生成树,e为T的一条边,则余树T补不包含G的键,T补+e中唯一包含G的键(e必定在键中)
(3)边子集B为G的一个边割,则边子集与G的每个圈有偶数条公共边
关联矩阵:横坐标为点纵坐标为边的矩阵,出边标记为1,入边标记为-1,将普通邻接矩阵每列两个元素中的一个1改为-1,得到的新矩阵成为定向图的关联矩阵
生成树的计数:将关联矩阵去除任意一行,在任取其(v-1)阶子方阵,其行列式的值就是生成树的个数
度矩阵K:当横纵坐标不同时值为这两个点间的平行边的条数的负数,横纵坐标相等时为点的度数,其值也等于关联矩阵和其转置相乘
Binet-Cauchy定理:连通图的生成树个数为|A*A的转置|,或者说连通图G的生成树数目=K的任一元素的代数余子式
Cayley定理:Kn中一共有N^n-2个不同的生成树

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值