电子科技大学《图论及其应用》复习总结--第三章 图的连通性

本文是关于电子科技大学《图论及其应用》课程的复习总结,重点聚焦在第三章——图的连通性。内容涵盖割边、割点、块的性质,以及图的连通度、敏格尔定理和图的宽直径等相关概念,旨在帮助读者深入理解图的连通性理论。
摘要由CSDN通过智能技术生成

第三章 图的连通性

一、割边、割点和块

(一)、割边及其性质

定义1 边e为图G的一条割边,如果 w ( G − e ) > w ( G ) w(G-e)>w(G) w(Ge)>w(G)

定理1 边 e 是图G的割边当且仅当 e 不在G的任何圈中。

推论1 e为连通图G的一条边,如果e含于G的某圈中,则G-e连通。

image-20200806160730167

image-20200806160738561

(二)、割点及其性质

定义2 在G中,如果E(G)可以划分为两个非空子集E1与E2,使 G[E1]和G[E2]以点v为公共顶点,称v为G的一个割点。

image-20200806160920074

定理2 G无环且非平凡,则v是G的割点,当且仅当
w ( G − e ) > w ( G ) w(G-e)>w(G) w(Ge)>w(G)
定理3 v 是树T的顶点,则v是割点,当且仅当v是树的分支点。

定理4 设v是无环连通图G的一个顶点,则v是G的割点,当且仅当V(G-v)可以划分为两个非空子集V1与V2,使得对任意x ∈V1, y ∈V2, 点v在每一条x y路上。

证明:

无环非平凡连通图至少有两个非割点。

恰有两个非割点的连通单图是一条路。

若v是单图G的割点,则它不是G的补图的割点。

若v是单图G的割点,则它不是G的补图的割点。

(三)、块及其性质

定义3 没有割点的连通图称为是一个块图,简称块;G的一个子图B称为是G的一个块,如果(1), 它本身是块;(2), 若没有真包含B的G的块存在(极大性)。

定理5 若|V(G)|≧3,则G是块,当且仅当G无环且任意两顶点位于同一圈上。

(三)、块割点树

image-20200806163031129

二、图的连通度与敏格尔定理

1、点连通度与边连通度的概念

定义1 给定连通图G,设 V ‘ ⊆ V ( G ) V^`\subseteq V(G) VV(G) ,若G -V’ 不连通,称V’为G的一个点割集,含有k个顶点的点割集称为k顶点割。G中点数最少的顶点割称为最小顶点割

定义2 在G中,若存在顶点割,称G的最小顶点割的顶点数称为G的点连通度;否则称n-1为其点连通度。G的点连通度记为k(G), 简记为k。若G不连通,k(G)=0。

定义3 在G中,最小边割集所含边数称为G的边连通度。边连通度记为λ(G) 。若G不连通或G是平凡图,则定义λ(G) =0

定义4 在G中,若k (G)≧ k, 称G是k连通的;若λ(G)≧k,称G是k边连通的。

2、连通度的性质

定理1 (惠特尼1932) 对任意图G,有:
k ( G ) ≤ λ ( G ) ≤ δ ( G ) k(G)\leq \lambda (G)\leq\delta (G) k(G)λ(G)δ(G)

定理2 设G是(n, m)连通图,则:
k ( G )

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值