这篇文章是我在学习贝叶斯算法的一个过程。
需要掌握的知识点
- 随机变量
通常变量是固定,当一个变量赋值为x的时候他就是固定的变量,这里我们通常称为普通变量,那么什么是随机变量呢?有时候一个变量它的值不是固定的,例如:它可能有20%为5,80%为10那么我们就称这个变量为随机变量。而且随机变量我们通常可以将其分为离散型随机变量和连续型随机变量,这两种怎么区分呢?可以通过直接求和得出的就是“离散型”,需要通过积分的方法计算的就是“连续型”。
2.概率分布
离散分布模型
伯努利分布,就是指单个随机变脸的分布,而且这个变量的取值只有两个,0或1.
连续分布模型
正态分布
3.期望值
现在到了我们的正菜 贝叶斯
-
联合概率
由多个随机变量决定的概率P(x,y) -
边缘概率
离散型随机变量,通过联合概率在y上求和
连续行随机变量,通过联合概率在y上积分 -
条件概率
某个随机变量的情况下,另一个随机变量出现的概率P(y|x)
三者之间的关系
P(x,y)=P(x|y)*P(y)