1.分解质因数
质因数个数
题目描述
Time Limit: 1000 ms
Memory Limit: 32768 mb
求正整数N(N>1)的质因数的个数。 相同的质因数需要重复计算。如120=22235,共有5个质因数。
输入描述:
可能有多组测试数据,每组测试数据的输入是一个正整数N,(1<N<10^9)。
输出描述:
对于每组数据,输出N的质因数的个数。
代码
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1000000+5;
int prime[maxn];
void getPrim(){
memset(prime,0,sizeof(prime));
for(int i = 2;i<=maxn;i++){
if(!prime[i])
prime[++prime[0]] = i;
for(int j = 1;j<=maxn&&prime[j]*i<=maxn;j++){
prime[prime[j]*i] = 1;
if(i%prime[j]==0) break;
}
}
}
int main(){
getPrim();
int n;
while (scanf("%d",&n)!=EOF){
int ans = 0;
for(int i = 1;i<prime[0];i++){
while (n%prime[i]==0){
n/=prime[i];
ans++;
}
}
if(n>1) ans++;
printf("%d\n",ans);
}
return 0;
}
整除问题
题目描述
Time Limit: 1000 ms
Memory Limit: 256 mb
给定n,a求最大的k,使n!可以被a^ k整除但不能被a^(k+1)整除。
输入描述:
两个整数n(2<=n<=1000),a(2<=a<=1000)
输出描述:
一个整数.
思路
这个题首先如果数字小的话是可以考虑轮流试的,但是1000的数字范围无论是对阶乘还是幂都太大了。于是我们想一下,既然要求整除,说明每个素因子都是可以抵消的,这样我们就可以求解了。但是还要考虑到,因为后面是求哪个k,所以说我们不是对n!和a的幂分别求出对应的素数因子数组。我采取的方法是这样的:
1、分解得到n!的素数数组。
2、求出a的素数数组
3、求两者的商去最小值
代码
在这里插入代码片