算法之数学--二分快速幂,分解素因数2021-03-09(未完待续)

1.分解质因数

质因数个数

题目描述

Time Limit: 1000 ms
Memory Limit: 32768 mb
求正整数N(N>1)的质因数的个数。 相同的质因数需要重复计算。如120=22235,共有5个质因数。

输入描述:

可能有多组测试数据,每组测试数据的输入是一个正整数N,(1<N<10^9)。

输出描述:

对于每组数据,输出N的质因数的个数。

代码
#include <bits/stdc++.h>
using namespace std;

const int maxn = 1000000+5;
int prime[maxn];
void getPrim(){
	memset(prime,0,sizeof(prime));
	for(int i = 2;i<=maxn;i++){
		if(!prime[i])	
			prime[++prime[0]] = i;
		for(int j =  1;j<=maxn&&prime[j]*i<=maxn;j++){
			prime[prime[j]*i] = 1;
			if(i%prime[j]==0)	break;
		}
	}
}
int main(){
	getPrim();
	int n;
	while (scanf("%d",&n)!=EOF){
		int ans = 0;
		for(int i = 1;i<prime[0];i++){
			while (n%prime[i]==0){
				n/=prime[i];
				ans++;
			}
		}
		if(n>1) ans++;
		printf("%d\n",ans);
	}
	return 0;
}

整除问题

题目描述

Time Limit: 1000 ms
Memory Limit: 256 mb
给定n,a求最大的k,使n!可以被a^ k整除但不能被a^(k+1)整除。

输入描述:

两个整数n(2<=n<=1000),a(2<=a<=1000)

输出描述:

一个整数.

思路

这个题首先如果数字小的话是可以考虑轮流试的,但是1000的数字范围无论是对阶乘还是幂都太大了。于是我们想一下,既然要求整除,说明每个素因子都是可以抵消的,这样我们就可以求解了。但是还要考虑到,因为后面是求哪个k,所以说我们不是对n!和a的幂分别求出对应的素数因子数组。我采取的方法是这样的:
1、分解得到n!的素数数组。
2、求出a的素数数组
3、求两者的商去最小值

代码
在这里插入代码片

2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值