排序算法原理,时间复杂度,实现过程详解

主要几种排序算法的思维导图

1、直接插入排序
       从第一个数开始依次向它的前一个数比较,如果这个数大,则将之前的数向后移位(每次排序会需要移动很多其他的数)

/**
 * 直接插入排序的原理
 */
public class InsertSort {

    public static void main(String []args){
        int[] a = {12,27,5,16,1,85,42,29,6};
        insertSort(a);
        for(int i = 0; i<a.length; i++){
            System.out.println(a[i]);
        }
    }

    public static void insertSort(int[] a){
        int insertNum;
        for(int i=1;i<a.length;i++){
            //当前数insertNum
            insertNum=a[i];
            //前一个数的索引j
            int j=i-1;
            //将前面序列比当前数大的所有元素前后移一位
            while(j>=0 && a[j]>insertNum){
                a[j+1]=a[j];
                j--;
            }
            // 插入当前数
            a[j+1]=insertNum;
        }
    }

}

2、希尔排序

希尔排序是直接插入排序改良的算法,又称缩小增量排序。

  1. 将数的个数设为n,k=n/2 (k取奇数),将下标差值(增量)为k的数分为一组,分组进行排序。
  2. (增量缩小)再取k=k/2 (k取奇数),将下标差值为k的数分为一组,分组进行排序。
  3. 重复第二步,直到k=1,最后执行简单插入排序。

 引用:https://www.jianshu.com/p/5e171281a387

//希尔排序
public class ShellSort {

    public static void main(String []args){
        int[] a = {12,27,5,16,1,85,42,29,6};
        sheelSort(a);
        for(int i = 0; i<a.length; i++){
            System.out.println(a[i]);
        }
    }

    public static void sheelSort(int[] a){
        int d = a.length;
        while (d!=0) {
            d=d/2;
            for (int x = 0; x < d; x++) {
                for (int i = x + d; i < a.length; i += d) {
                    int j = i - d;
                    int temp = a[i];
                    for (; j >= 0 && temp < a[j]; j -= d) {
                        a[j + d] = a[j];
                    }
                    a[j + d] = temp;
                }
            }
        }
    }


}

快速排序和堆排序

详见本篇博客:https://blog.csdn.net/sinat_41144773/article/details/89439446

 

几种算法的时间复杂度总结

引用:https://blog.csdn.net/yushiyi6453/article/details/76407640

时间复杂度:

有「常数」,「线性」,「对数」,「线性对数」时间复杂度几大类

O(1) 遍历的长度为1 ,hashmap的链表长度为1时(理性情况)

O(n) 遍历的长度为n,hashmap的链表长度为n时(最坏的情况)

O(log2为底n)类似二分查找每次(几乎)可以去掉一半的候选数字的问题,输入的元素个数虽然翻倍,但是程序运行所花的时间却只增加了 1。

O(nlog2为底n)高效的排序算法快速、归并、堆排序

直接插入排序、冒泡、选择排序,需要两个for循环,平均时间复杂度为O(n的平方)
快速、归并、希尔、堆排序基于二分思想,log以2为底,平均时间复杂度为O(nlogn)
排序算法的稳定性:排序前后相同元素的相对位置不变。 算法不稳定 :“快希选堆”不稳定

学习时间复杂度对于我们的工作有什么用:  对于不同的数据规模,能够决策采用不同的解决方案。

  • 了解什么情况下用暴力解法就能够解决问题,避免写复杂的代码。
  • 在写代码之前,就能够预估程序的运行时间,从而可以知道是否能够满足产品需求。
  • 在程序出现性能瓶颈时,能够有解决方案而不是抓瞎。

引用:https://www.jianshu.com/p/88dfc8f405ab


 

未完。。

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值