Cross Hyperspectral and LiDAR Attention Transformer

TGRS 2024:Cross Hyperspectral and LiDAR Attention Transformer: An Extended Self-Attention for Land Use and Land Cover Classification

题目

Cross Hyperspectral and LiDAR Attention Transformer: An Extended Self-Attention for Land Use and Land Cover Classification

作者

Swalpa Kumar Roy; Atri Sukul; Ali Jamali; Juan M. Haut; Pedram Ghamisi

关键词

Laser radar, Transformers, Feature extraction, Land surface, Hyperspectral imaging, Task analysis, Fuses

研究动机

跨域特征的关联性提取

模型

在这里插入图片描述在这里插入图片描述

像 Vision Transformer (ViT) 这样的注意力驱动深度模型的成功激发了人们对跨领域探索的兴趣。 然而,基于电流互感器的遥感技术主要关注单模态数据,限制了其充分利用不断增长的多模态地球观测数据的潜力。 增强这些模型的多模式集成对于综合遥感应用至关重要。 为了实现这一目标,我们通过引入交叉高光谱和激光雷达(Cross-HL)注意力来扩展传统的自注意力机制。 我们提出了一种新颖的多模式深度学习框架,可有效融合遥感(RS)数据,旨在改善土地利用和土地覆盖(LULC)识别。 为了增强不同模态之间信息的准确交换,我们使用 Cross-HL 自注意力模块融合了它们的补丁投影。 在此过程中,LiDAR 补丁令牌充当查询( Q ),而键( K )和值( V )则从 HS 补丁令牌派生。 为了证明 Cross-HL 在所提出的多模态深度学习框架中的优越性,我们对三个多模态 RS 基准数据集:Houston、Trento 和 MUUFL 进行了广泛的实验。 这些数据集包含高光谱和光探测与测距 (LiDAR) 数据。

论文以及代码

论文链接: link
代码链接: link

  • 6
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值