#Z-score标准化数据,按通道分离
import matplotlib as mpl
import matplotlib.colors as mcolors
import random
import math
iSampleRate = 2000 # 采样频率
colors=list(mcolors.TABLEAU_COLORS.keys()) #颜色变化
for j in range(1, 2):
h5 = h5py.File('F:/DB2/refilter/DB2_s' + str(j) + 'refilter.h5', 'r')
alldata = h5['alldata'][:]
seglist = segment(alldata, 1, 12)
bnlist = bnsegment(seglist)
iemg = bnlist[1].data
iSampleCount = iemg.shape[0] # 采样数
plt.figure(figsize=(20,8))
t = np.linspace(0, iSampleCount / iSampleRate, iSampleCount)
for i in range(12):
plt.subplot(12,1,i+1)
plt.plot(iemg[10000:12000,i],color=mcolors.TABLEAU_COLORS[colors[int(math.fabs(i-2))]])
plt.axis('off')
plt.show()
2、ninapro动作段示意图
plt.rcParams['xtick.labelsize']=30
plt.rcParams['ytick.labelsize']=30
plt.rcParams['font.sans-serif'] = 'Times New Roman'
plt.figure(figsize=(20,8))
for j in range(1, 2):
dfraw = pd.read_hdf('F:/DB2/data/raw/DB2_s' + str(j) + 'raw1.h5', 'df')
dfraw = np.array(dfraw)
label = dfraw[:, 12]
dfraw = dfraw[432000:540000,]
for i in range(len(dfraw) ):
if (dfraw[i, 12] != 0):
dfraw[i, 13] = 0.00060
plt.plot(dfraw[:, 0], label='ch1',linestyle='-')
plt.plot(dfraw[:, 1], label='ch2',linestyle='-')
plt.plot(dfraw[:, 2], label='ch3',linestyle='-')
plt.plot(dfraw[:, 3], label='ch4',linestyle='-')
plt.plot(dfraw[:, 4], label='ch5',linestyle='-')
plt.plot(dfraw[:, 5], label='ch6',linestyle='-')
plt.plot(dfraw[:, 6], label='ch7',linestyle='-')
plt.plot(dfraw[:, 7], label='ch8',linestyle='-')
plt.plot(dfraw[:, 8], label='ch9',linestyle='-')
plt.plot(dfraw[:, 9], label='ch10',linestyle='-')
plt.plot(dfraw[:, 10],label='ch11', linestyle='-')
plt.plot(dfraw[:, 11],label='ch12', linestyle='-')
# plt.plot(dfraw[:, 13],color='c', linestyle='--',label='Action')
plt.xlabel('Samples', font1)
plt.ylabel('sEMG signal', font1)
# plt.legend(prop=font2, loc=1)
# plt.savefig(r"E:\PaperSupport\SVG\action分割.svg",format="svg")