ninapro肌电数据库DB2,论文流程用图

#Z-score标准化数据,按通道分离
import matplotlib as mpl 
import matplotlib.colors as mcolors
import random
import math
iSampleRate = 2000  # 采样频率
colors=list(mcolors.TABLEAU_COLORS.keys()) #颜色变化
for j in range(1, 2):
    h5 = h5py.File('F:/DB2/refilter/DB2_s' + str(j) + 'refilter.h5', 'r')
    alldata = h5['alldata'][:]
    seglist = segment(alldata, 1, 12)
    bnlist = bnsegment(seglist)
    iemg = bnlist[1].data
    iSampleCount = iemg.shape[0]  # 采样数
    plt.figure(figsize=(20,8))
    t = np.linspace(0, iSampleCount / iSampleRate, iSampleCount)
    for i in range(12):
        plt.subplot(12,1,i+1)
        plt.plot(iemg[10000:12000,i],color=mcolors.TABLEAU_COLORS[colors[int(math.fabs(i-2))]])
        plt.axis('off') 
    plt.show()

2、ninapro动作段示意图

plt.rcParams['xtick.labelsize']=30
plt.rcParams['ytick.labelsize']=30
plt.rcParams['font.sans-serif'] = 'Times New Roman'
plt.figure(figsize=(20,8))
for j in range(1, 2):
    dfraw = pd.read_hdf('F:/DB2/data/raw/DB2_s' + str(j) + 'raw1.h5', 'df')
    dfraw = np.array(dfraw)
    label = dfraw[:, 12]
    dfraw = dfraw[432000:540000,]
    for i in range(len(dfraw) ):
        if (dfraw[i, 12] != 0):
            dfraw[i, 13] = 0.00060
  
    plt.plot(dfraw[:, 0], label='ch1',linestyle='-')
    plt.plot(dfraw[:, 1], label='ch2',linestyle='-')
    plt.plot(dfraw[:, 2], label='ch3',linestyle='-')
    plt.plot(dfraw[:, 3], label='ch4',linestyle='-')
    plt.plot(dfraw[:, 4], label='ch5',linestyle='-')
    plt.plot(dfraw[:, 5], label='ch6',linestyle='-')
    plt.plot(dfraw[:, 6], label='ch7',linestyle='-')
    plt.plot(dfraw[:, 7], label='ch8',linestyle='-')
    plt.plot(dfraw[:, 8], label='ch9',linestyle='-')
    plt.plot(dfraw[:, 9], label='ch10',linestyle='-')
    plt.plot(dfraw[:, 10],label='ch11', linestyle='-')
    plt.plot(dfraw[:, 11],label='ch12', linestyle='-')
#     plt.plot(dfraw[:, 13],color='c', linestyle='--',label='Action')
 
    plt.xlabel('Samples', font1)
    plt.ylabel('sEMG signal', font1)
#     plt.legend(prop=font2, loc=1)
#     plt.savefig(r"E:\PaperSupport\SVG\action分割.svg",format="svg")

 

评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值