作为算法工程师里的一小撮,相比机器学习、人工智能、视觉等算法工程师,运筹优化算法工程师在国内算是又小众又新鲜。作为近几年才慢慢进入大众视野的岗位,人们对其的认知和了解相对其他AI领域,还是较少的。比如我,其实也不清楚到底运筹优化的定位在哪。所以在这里和自己探讨下,看看如何成为一名更好的、合格的运筹优化算法工程师,给自己一个方向。如果有人不怕被坑,欢迎参考,当然更欢迎拍砖和补充。
引言
运筹学(operations research, OR)是研究如何为复杂的工程或者管理问题构建数学模型,以及如何分析模型以探索可能解决方案的一门学科。
这是运筹学,OR的定义,简而言之,作为一名OR人,解决的问题通常是通过三个步骤对现有场景或问题进行优化。
- 问题描述和建模
- 模型分析和数据分析
- 算法求解+应用
所以这么一看,OR确实不如机器学习、深度学习、计算机视觉等学科那么高大上和牛逼,所以不推荐大家学习。因为工资比前者差很多,HC也差很多。(日常劝退)
基本要求
基本要求是要健康,能加班。
之后是具体的一些要求:
- 学历:本科学历劝退,除非你特别优秀,不过这种就推荐去海外读个硕士或博士回来。企业的要求百分之90%以上都是硕士学历起。对博士十分热爱,而且竞争也很激烈,博士很多,海外名校博士也很多,所以学历不够要么劝退,要么改行,要么继续深造。
- 专业:涉及运筹学的专业很多,包括并不限于应用数学,运筹学,计算机,工业工程,系统工程,物流工程,管理学等等。基本学习的课程包括运筹学,最优化理论,数值分析,线性代数,统计学,概率论,高数等等,对数学要求高。
- 编程能力:最重要,语言常用的有C/C++,Java,Python,Lua等,推荐C/C++,因为快。Python的话建议一定要掌握,完成日常业务和数据分析没