leetcode - 1293. Shortest Path in a Grid with Obstacles Elimination

Description

You are given an m x n integer matrix grid where each cell is either 0 (empty) or 1 (obstacle). You can move up, down, left, or right from and to an empty cell in one step.

Return the minimum number of steps to walk from the upper left corner (0, 0) to the lower right corner (m - 1, n - 1) given that you can eliminate at most k obstacles. If it is not possible to find such walk return -1.

Example 1:
在这里插入图片描述

Input: grid = [[0,0,0],[1,1,0],[0,0,0],[0,1,1],[0,0,0]], k = 1
Output: 6
Explanation: 
The shortest path without eliminating any obstacle is 10.
The shortest path with one obstacle elimination at position (3,2) is 6. Such path is (0,0) -> (0,1) -> (0,2) -> (1,2) -> (2,2) -> (3,2) -> (4,2).

Example 2:
在这里插入图片描述

Input: grid = [[0,1,1],[1,1,1],[1,0,0]], k = 1
Output: -1
Explanation: We need to eliminate at least two obstacles to find such a walk.

Constraints:

m == grid.length
n == grid[i].length
1 <= m, n <= 40
1 <= k <= m * n
grid[i][j] is either 0 or 1.
grid[0][0] == grid[m - 1][n - 1] == 0

Solution

BFS, but use the remaining time for removing rocks as the visited label. It’s always better if we reach the same point, and the remaining chance to remove rocks is larger.

Time complexity: o ( m ∗ n ) o(m * n) o(mn)
Space complexity: o ( m ∗ n ) o(m * n) o(mn)

Code

class Solution:
    def shortestPath(self, grid: List[List[int]], k: int) -> int:
        queue = collections.deque([(0, 0, k, 0)])
        visited = {}
        m, n = len(grid), len(grid[0])
        while queue:
            x, y, r, step = queue.popleft()
            if visited.get((x, y), -1) >= r:
                continue
            if x == m - 1 and y == n - 1:
                return step
            visited[(x, y)] = r
            for dz in (-1, 1):
                if 0 <= x + dz < m:
                    if grid[x + dz][y] == 0:
                        queue.append((x + dz, y, r, step + 1))
                    elif r - 1 >= 0:
                        queue.append((x + dz, y, r - 1, step + 1))
                if 0 <= y + dz < n:
                    if grid[x][y + dz] == 0:
                        queue.append((x, y + dz, r, step + 1))
                    elif r - 1 >= 0:
                        queue.append((x, y + dz, r - 1, step + 1))
        return -1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值