1、矩阵点乘:这个概念和矩阵内积是不一样的,矩阵内积是两个向量每一位对应相乘然后相加,最终是一个数字,但是点乘是两个向量对应位相乘,最终仍然是个向量。
2、数据预处理很重要。在做实验之前,需要先认真考察你的实验模型的数据要求是什么,比如说:SVM的实验数据和一般的分类算法的要求的一个不同的点是:数据的分类标签y ={+1,-1} 。所以,如果说,你现有的数据集的分类标签是y ={+1,0},你需要在实验之前对数据进行预处理。
3、如果在学习别人的代码过程中,遇到很长的函数,不清楚每一步的运行过程,不妨将函数拆开,一步步实现,这样效率更快。
4、通过多次实验发现,一个分类算法的两个指标,AUC总是大于ACC.