机器学习 SVM感想

SVM向量机的机制可以理解为:支撑向量机如何解决“不适定问题呢”?SVM要找到一条泛化性比较好的决策边界,就是这条直线要离两个分类都尽可能的远,我们认为这样的决策边界就是好的。

其中有,在线性可分问题中,对于样本点来说,存在一根直线可以将样本点划分,我们称之为Hard Margin SVM;但是(同样线性不可分),有时候会出现不那么完美,样本点会有一些噪声或者异常点,并不能完全分开。即没有一条直线可以将样本分成两类。那么就提出了Soft Margin SVM。就是对于svm的最后最有结果存在一定的容错率。更加适合在存在噪声的数据之中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值