SVM向量机的机制可以理解为:支撑向量机如何解决“不适定问题呢”?SVM要找到一条泛化性比较好的决策边界,就是这条直线要离两个分类都尽可能的远,我们认为这样的决策边界就是好的。
其中有,在线性可分问题中,对于样本点来说,存在一根直线可以将样本点划分,我们称之为Hard Margin SVM
;但是(同样线性不可分),有时候会出现不那么完美,样本点会有一些噪声或者异常点,并不能完全分开。即没有一条直线可以将样本分成两类。那么就提出了Soft Margin SVM
。就是对于svm的最后最有结果存在一定的容错率。更加适合在存在噪声的数据之中。