SVM算法笔记一

这篇博客记录了作者在学习支持向量机(SVM)过程中的一些核心概念笔记,虽然算法背后的数学原理较为复杂,但作者试图通过理解基本概念来逐步揭开SVM的神秘面纱。
摘要由CSDN通过智能技术生成

SVM里面涉及的数学要求太高了.我一时半会也没看懂.看了看一些概念性的东西.做的笔记贴上来. 

SVM算法学习笔记:

 

SVM算法是用于机器学习和机器训练的一个有效算法。

Support Vector Machine

 

第一章:学习方法

1.1 监督学习

学到的概念有:

监督学习:当样例是由输入/输出对给出时,成为监督学习. 

有关输入输出关系的样例称为训练数据.

 

输入/输出对通常反映了把输入映射到输出的一种函数关系.

当输入到输出存在内在函数时,该函数称为目标函数.

由学习算法输出的对目标函数的估计成为学习的解.

 

对于分类问题,该函数有时称为决策函数.

 

在学习区分赛车的例子中,输出为简单的是/,它就可看作是二元输出值.对于识别蛋白质类型的问题,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值