leetcode 376. Wiggle Subsequence | 376. 摆动序列(动态规划)

本文介绍了如何使用动态规划解决LeetCode中的Wiggle Subsequence问题,作者通过与300题Longest Increasing Subsequence的对比,阐述了动态规划的思路,并分享了自己的解题草稿,探讨了如何找到DP问题的规律。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

https://leetcode.com/problems/wiggle-subsequence/
在这里插入图片描述

题解

刷题大概确实是有效果的吧…
印象中,这算是今日第二道,全局第三道没看答案写出来的 dp …
找到 dp 的套路,总会有让 dp 不再成为玄学的那一天,指日可待…

DP 思路

也不全是自己想的思路。这道题与 leetcode 300. Longest Increasing Subsequence | 300. 最长递增子序列(动态规划)非常类似,思路很大程度上受到了这道题的启发,也就是在计算连续子序列的问题时,dp 用来记录强制包含当前元素时的最长子序列长度。

第 300 题 “最长递增子序列” 不同的是,本题要求子序列 增减性不断交替,所以还需要考虑 前一个序列的末尾元素的增减性。为此,我们创建一个 incr[] 数组,incr[j] 用来记录当前 j 位置最长子序列的末尾元素的增减性,以便和后面 j 位置上的元素相呼应。

顺便贴上几乎看不懂的草稿,记录一下“尝试”的过程(对于 dp 问题,可以先用前几个数尝试一下,找感觉)
在这里插入图片描述

class Solution {
    public int wiggleMaxLength(int[] nums) {
        if (nums.length == 1) return 1;
        if (nums.length == 2) return nums[0] == nums[1] ? 1 : 2;

        boolean[] incr = new boolean[nums.length];
        int[] dp = new int[nums.length];

        dp[0] = 1;
        for (int i = 1; i < dp.length; i++) {
            dp[i] = 1;
            for (int j = 0; j < i; j++) {
                if (nums[j] == nums[i]) continue;
                if (j == 0 || incr[j] == nums[j] > nums[i]) {
                    if (dp[i] < dp[j] + 1) {
                        dp[i] = dp[j] + 1;
                        incr[i] = nums[j] < nums[i];
                    }
                }
            }
        }
        return dp[dp.length - 1];
    }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值