题目
https://leetcode.com/problems/wiggle-subsequence/
题解
刷题大概确实是有效果的吧…
印象中,这算是今日第二道,全局第三道没看答案写出来的 dp …
找到 dp 的套路,总会有让 dp 不再成为玄学的那一天,指日可待…
DP 思路
也不全是自己想的思路。这道题与 leetcode 300. Longest Increasing Subsequence | 300. 最长递增子序列(动态规划)非常类似,思路很大程度上受到了这道题的启发,也就是在计算连续子序列的问题时,dp 用来记录强制包含当前元素时的最长子序列长度。
与 第 300 题 “最长递增子序列” 不同的是,本题要求子序列 增减性不断交替,所以还需要考虑 前一个序列的末尾元素的增减性。为此,我们创建一个 incr[] 数组,incr[j] 用来记录当前 j 位置最长子序列的末尾元素的增减性,以便和后面 j 位置上的元素相呼应。
顺便贴上几乎看不懂的草稿,记录一下“尝试”的过程(对于 dp 问题,可以先用前几个数尝试一下,找感觉)
class Solution {
public int wiggleMaxLength(int[] nums) {
if (nums.length == 1) return 1;
if (nums.length == 2) return nums[0] == nums[1] ? 1 : 2;
boolean[] incr = new boolean[nums.length];
int[] dp = new int[nums.length];
dp[0] = 1;
for (int i = 1; i < dp.length; i++) {
dp[i] = 1;
for (int j = 0; j < i; j++) {
if (nums[j] == nums[i]) continue;
if (j == 0 || incr[j] == nums[j] > nums[i]) {
if (dp[i] < dp[j] + 1) {
dp[i] = dp[j] + 1;
incr[i] = nums[j] < nums[i];
}
}
}
}
return dp[dp.length - 1];
}
}