如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。
相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。
示例 1:
输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。
示例 2:
输入:nums = [1,17,5,10,13,15,10,5,16,8]
输出:7
解释:这个序列包含几个长度为 7 摆动序列。
其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。
示例 3:
输入:nums = [1,2,3,4,5,6,7,8,9]
输出:2
#自己动手输入 列:1 17 5 10 13 15 10 5 16 8
l=list(map(int,input().split()))
n=len(l)
dp=[[1,1] for i in range(n)]
for i in range(1,n):
if l[i]==l[i-1]:
dp[i][0]=dp[i-1][0]
dp[i][1]=dp[i-1][1]
elif l[i]<l[i-1]:
dp[i][1]=dp[i-1][0]+1# 第i元素结尾,且最后下降的最长子序列长度 ↓
dp[i][0]=dp[i-1][0]#升保持不变
else:
dp[i][0] = dp[i - 1][1] + 1# 第i元素结尾,且最后上升的最长子序列长度 ↑
dp[i][1] = dp[i - 1][1]
print(max(dp[n-1]))