LeetCodeWeeklyContest-183

Rank: 1512 / 3754 AC 2/4

题目传送

非递增顺序的最小子序列

其实并非是DP,而是简单的签到题

class Solution {
public:
    vector<int> minSubsequence(vector<int>& nums) {
        int sum = 0,n= nums.size(),cur=0;
        for(int i=0;i<n;i++){
            sum += nums[i];
        }
        sort(nums.begin(),nums.end(),greater<int>());
        vector<int> res;
        for(int i=0;i<n;i++){
            cur += nums[i];
            res.push_back(nums[i]);
            if(cur>sum-cur) {
                break;
            }
        }
        return res;

    }
};

时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn) 空间复杂度: O ( n ) O(n) O(n)

将二进制表示减到 1 的步骤数

然而这个题目的数据范围1 <= s.length <= 500,如果用将二进制字符串换为int/long long的话,都会爆,则只需要模拟一下转换过程即可,先将字符串翻转,如果字符串以1开头的话,便为奇数,则将距离1最近的0之间所有1变为0,然后将距离1最近的0变为1,其实就模拟加1的过程;如果字符串以0开头的话,则直接将字符串第一位去掉即可…
重复这个过程,直到字符串长度为1,字符串为'1'

class Solution {
public:
    int numSteps(string s) {
        reverse(s.begin(),s.end());
        int res = 0;
        while(!(s.length()==1&&s[0]=='1')){
            res ++;
            if(s[0]=='1'){
                int j = 0;
                while(j<s.length()&&s[j]=='1'){
                    s[j]='0';
                    j++;
                }
                if(s[j]=='0') s[j]='1';
                else s+='1';
            }
            else if(s[0]=='0'){
                s = s.substr(1);
            }
        }
        return res;
    }
};

时间复杂度: O ( n ) O(n) O(n),空间复杂度: O ( 1 ) O(1) O(1)

最长快乐字符串

参考周赛Rank1写法
ban表示禁用的,sel表示要选择的。

class Solution {
public:
    string longestDiverseString(int a, int b, int c) {
        string res = "";
        vector<int> cnt;
        cnt.push_back(a); cnt.push_back(b); cnt.push_back(c);
        while(true){
            int ban = -1;
            if(res.size()>=2&&res[res.size()-1]==res[res.size()-2]){
                ban = res[res.size()-1]-'a';
            }
            int sel = -1;
            for(int i=0;i<3;i++){
                if(ban==i||cnt[i]==0) continue;
                else if(sel==-1||cnt[i]>cnt[sel]) sel = i;
            }
            if(sel==-1) break;
            res += 'a'+sel;
            cnt[sel]--;
        }
        return res;
    }
};

时间复杂度: O ( a + b + c ) O(a+b+c) O(a+b+c),空间复杂度: O ( a + b + c ) O(a+b+c) O(a+b+c)

石子游戏 III

博弈问题
思路参考:零和!对手采取最优得分最少时,自己最高!
dp[i]表示先手者从第i堆到最后一堆能取到的最大值
尽可能把dp数组开大,这样就不用考虑下标越界的问题
d p [ i ] = m a x ( d p [ i ] , s u m − d p [ i + 1 ] , s u m − d p [ i + 2 ] , s u m − d p [ i + 3 ] ) dp[i] = max(dp[i],sum-dp[i+1],sum-dp[i+2],sum-dp[i+3]) dp[i]=max(dp[i],sumdp[i+1],sumdp[i+2],sumdp[i+3])
s u m = ∑ i n s t o n e V a l u e [ i ] sum = \sum _i ^n stoneValue[i] sum=instoneValue[i]

class Solution {
public:
    string stoneGameIII(vector<int>& stoneValue) {
        int n = stoneValue.size(),sum=0,dp[50010];
        memset(dp,0,size(dp));
        for(int i=n-1;i>=0;i--){
            sum += stoneValue[i];
            dp[i] = -10000000;
            for(int j=1;j<=3;j++){
               dp[i] = max(dp[i],sum-dp[i+j]);
            }
        }
        if(dp[0]>sum-dp[0]) return "Alice";
        else if(dp[0]==sum-dp[0]) return "Tie";
        else return "Bob";
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值