目录
1. 优先级队列
1.1 概念
队列是一种先进先出(FIFO)的数据结构,但有些情况下,操作的数据可能带有优先级,一般出队 列时,可能需要优先级高的元素先出队列,该中场景下,使用队列显然不合适,比如:在手机上玩游戏的时候,如 果有来电,那么系统应该优先处理打进来的电话;初中那会班主任排座位时可能会让成绩好的同学先挑座位。 在这种情况下,数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。这种数 据结构就是优先级队列(Priority Queue)。
2. 优先级队列的模拟实现
JDK1.8中的PriorityQueue底层使用了堆这种数据结构,而堆实际就是在完全二叉树的基础上进行了一些调整。
2.1 堆的概念
如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储 在一 个一维数组中,并满足:Ki< = K2i+1 且 Ki <= K2i+2(Ki >= K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为 小堆(或大 堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
堆的性质:
- 堆中某个节点的值总是不大于或不小于其父节点的值;
- 堆总是一棵完全二叉树。
2.2 堆的存储方式
从堆的概念可知,堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储

注意:对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节 点,就会导致空间利用率比较低。
将元素存储到数组中后,可以根据二叉树章节的性质5对树进行还原。假设i为节点在数组中的下标,则有:
- 如果i为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2
- 如果2 * i + 1 小于节点个数,则节点i的左孩子下标为2 * i + 1,否则没有左孩子
- 如果2 * i + 2 小于节点个数,则节点i的右孩子下标为2 * i + 2,否则没有右孩子
3.常用接口介绍
3.1 PriorityQueue的特性
Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线 程不安全的,PriorityBlockingQueue是线程安全的,本文主要介绍PriorityQueue。
关于PriorityQueue的使用要注意:
1. 使用时必须导入PriorityQueue所在的包,即:
import java.util.PriorityQueue;
2. PriorityQueue中放置的元素必须要能够比较大小,不能插入无法比较大小的对象,否则会抛出 ClassCastException异常
3. 不能插入null对象,否则会抛出NullPointerException
4. 没有容量限制,可以插入任意多个元素,其内部可以自动扩容
5. 插入和删除元素的时间复杂度为
6. PriorityQueue底层使用了堆数据结构
7. PriorityQueue默认情况下是小堆---即每次获取到的元素都是最小的元素
3.2 PriorityQueue常用接口介绍
| 函数名 | 功能介绍 |
| boolean offer(E e) | 插入元素e,插入成功返回true,如果e对象为空,抛出NullPointerException异常,时 间复杂度 ,注意:空间不够时候会进行扩容 |
| E peek() | 获取优先级最高的元素,如果优先级队列为空,返回null |
| E poll() | 移除优先级最高的元素并返回,如果优先级队列为空,返回null |
| int size() | 获取有效元素的个数 |
| void clear() | 清空 |
| boolean isEmpty() | 检测优先级队列是否为空,空返回true |
优先级队列的扩容说明:
- 如果容量小于64时,是按照oldCapacity的2倍方式扩容的
- 如果容量大于等于64,是按照oldCapacity的1.5倍方式扩容的
- 如果容量超过MAX_ARRAY_SIZE,按照MAX_ARRAY_SIZE来进行扩容
4 堆的创建
堆向下调整:
对于集合{ 27,15,19,18,28,34,65,49,25,37 }中的数据,如果将其创建成堆呢?

仔细观察上图后发现:根节点的左右子树已经完全满足堆的性质,因此只需将根节点向下调整好即可。
向下调整(以小堆为例):
1. 让parent标记需要调整的节点,child标记parent的左孩子(注意:parent如果有孩子一定先是有左孩子)
2. 如果parent的左孩子存在,即:child < size, 进行以下操作,直到parent的左孩子不存在
- parent小于较小的孩子child,调整结束
- 否则:交换parent与较小的孩子child,交换完成之后,parent中大的元素向下移动,可能导致子 树不满足对的性质,因此需要继续向下调整,即parent = child;child = parent*2+1; 然后继续2。

代码示例:
初始化堆:
public void createHeap(int[] array) {
for (int i = 0; i < array.length; i++) {
elem[usedSize] = array[i];
usedSize++;
}
}
创建小根堆:在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。
public void creatminheap(){
for (int i = (usedSize - 1 - 1)/2; i >= 0 ; i--) {
shiftDown(i,usedSize - 1);
}
}
private void shiftDown(int root,int len) {
int child = root * 2 + 1;
while (child < len){
if (child + 1 < usedSize - 1 && elem[child+1] < elem[child]){
child++;
}
if (elem[child] < elem[root]){
swap(child,root);
}else {
break;
}
root = child;
child = root * 2 + 1;
}
}
创建大根堆:在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。
public void creatminheap(){
for (int i = (usedSize - 1 - 1)/2; i >= 0 ; i--) {
shiftDown(i,usedSize - 1);
}
}
private void shiftDown(int root,int len) {
int child = root * 2 + 1;
while (child < len){
if (child + 1 < usedSize - 1 && elem[child+1] > elem[child]){
child++;
}
if (elem[child] > elem[root]){
swap(child,root);
}else {
break;
}
root = child;
child = root * 2 + 1;
}
}
堆的插入
堆的插入总共需要两个步骤:
1. 先将元素放入到底层空间中(注意:空间不够时需要扩容)
2. 将最后新插入的节点向上调整,直到满足堆的性质

向上调整:
private void shiftUp(int child) {
int parent = (child - 1) / 2;
while (child > 0){
if (elem[child] > parent){
swap(child , parent);
}else {
break;
}
child = parent;
parent = (child - 1) / 2;
}
}
offer方法(入队):
public void push(int val) {
if (isFull()){
Arrays.copyOf(elem,elem.length*2);
}
elem[usedSize++] = val;
shiftUp(usedSize - 1);
}
堆的删除:
注意:堆的删除一定删除的是堆顶元素。具体如下:
1. 将堆顶元素对堆中最后一个元素交换
2. 将堆中有效数据个数减少一个
3. 对堆顶元素进行向下调整
public void pollHeap() {
int tmp = elem[0];
swap(0,usedSize-1);
usedSize--;
shiftDown(0,usedSize);
}
peek方法:
public int peekHeap() {
return elem[0];
}
1050

被折叠的 条评论
为什么被折叠?



