快速排序

首先,快速排序采用了“分治的思想”,什么问题可以用到“分治思想”?我们把一个原始问题分解为一系列的子问题,这些子问题拥有和原问题完全一致的解决思路,这种问题就可以用“分治思想”来解决。

“分治”分为三个步骤

  1. 分解
  2. 解决
  3. 合并

下面以快排为例。

分解:

在常规的快排算法中,我们将一个数组中的最后一位标记为“标兵”,通过遍历数组,来将每一个元素与“标兵”进行比较,小于它的放在前面,大于它的放在后面,这样就将一个数组分成了三部分,“小于标兵的子数组”、“标兵”、“大于标兵的子数组”

4被选做“标兵”,从前向后遍历数组,2小于4,放在前面,8大于4,放在后面,7大于4,放在后面……

直到6,原数组被分解为如下:

最后将“标兵”放在两个子数组中间

解决:

然后再对两个子数组进行相同的步骤,直至子子数组只剩下一个元素,此时该子子数组一定是有序的

合并:

合并通常与解决是同时进行的,且合并的前提是子问题已经被解决。

例如左子数组{2,1,3}将被分解为{2,1}{3}{}

左子数组又被分解为{}{1}{2}

此时子数组只剩下一个元素,开始进行合并

{1,2}

{1,2,3}

代码如下:

public class QuickSort {

	public static void main (String[] args) {
		
		int[] a = {2,8,7,1,3,5,6,4};
		quickSort (a, 0, a.length - 1);
		
		for (int i = 0; i < a.length; i++) {
			System.out.println (a[i]);
		}
	}
	
	public static void quickSort (int[] a, int p, int r) {
		int q = partition (a, p, r);
		
		if (p <= q - 1)
			quickSort (a, p, q - 1);
		if (q + 1 <= r)
			quickSort (a, q + 1, r);
	}
	
	public static int partition (int[] a, int p, int r) {
		
		int x = a[r];
		int i = p - 1;
		
		for (int j = p; j < r; j++) {
			if (a[j] <= x) {
				i += 1;
				int temp = a[i];
				a[i] = a[j];
				a[j] = temp;
			}
		}
		
		int temp = a[i + 1];
		a[i + 1] = a[r];
		a[r] = temp;
		
		return i + 1;
	}
}

当原数组已经是有序状态时,时间复杂度会增加至Θ(n^2),为了避免这种情况发生,可以随机寻找一位作为“标兵”,即在partition()方法中增加几行代码

	public static int partition (int[] a, int p, int r) {
		int random = (int)(Math.random () * (r - p) + p);
		int t = a[r];
		a[r] = a[random];
		a[random] = t;
		
		int x = a[r];
		int i = p - 1;
		
		for (int j = p; j < r; j++) {
			if (a[j] <= x) {
				i += 1;
				int temp = a[i];
				a[i] = a[j];
				a[j] = temp;
			}
		}
		
		int temp = a[i + 1];
		a[i + 1] = a[r];
		a[r] = temp;
		
		return i + 1;
	}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值