首先,快速排序采用了“分治的思想”,什么问题可以用到“分治思想”?我们把一个原始问题分解为一系列的子问题,这些子问题拥有和原问题完全一致的解决思路,这种问题就可以用“分治思想”来解决。
“分治”分为三个步骤
- 分解
- 解决
- 合并
下面以快排为例。
分解:
在常规的快排算法中,我们将一个数组中的最后一位标记为“标兵”,通过遍历数组,来将每一个元素与“标兵”进行比较,小于它的放在前面,大于它的放在后面,这样就将一个数组分成了三部分,“小于标兵的子数组”、“标兵”、“大于标兵的子数组”
4被选做“标兵”,从前向后遍历数组,2小于4,放在前面,8大于4,放在后面,7大于4,放在后面……
直到6,原数组被分解为如下:
最后将“标兵”放在两个子数组中间
解决:
然后再对两个子数组进行相同的步骤,直至子子数组只剩下一个元素,此时该子子数组一定是有序的
合并:
合并通常与解决是同时进行的,且合并的前提是子问题已经被解决。
例如左子数组{2,1,3}将被分解为{2,1}{3}{}
左子数组又被分解为{}{1}{2}
此时子数组只剩下一个元素,开始进行合并
{1,2}
{1,2,3}
代码如下:
public class QuickSort {
public static void main (String[] args) {
int[] a = {2,8,7,1,3,5,6,4};
quickSort (a, 0, a.length - 1);
for (int i = 0; i < a.length; i++) {
System.out.println (a[i]);
}
}
public static void quickSort (int[] a, int p, int r) {
int q = partition (a, p, r);
if (p <= q - 1)
quickSort (a, p, q - 1);
if (q + 1 <= r)
quickSort (a, q + 1, r);
}
public static int partition (int[] a, int p, int r) {
int x = a[r];
int i = p - 1;
for (int j = p; j < r; j++) {
if (a[j] <= x) {
i += 1;
int temp = a[i];
a[i] = a[j];
a[j] = temp;
}
}
int temp = a[i + 1];
a[i + 1] = a[r];
a[r] = temp;
return i + 1;
}
}
当原数组已经是有序状态时,时间复杂度会增加至Θ(n^2),为了避免这种情况发生,可以随机寻找一位作为“标兵”,即在partition()方法中增加几行代码
public static int partition (int[] a, int p, int r) {
int random = (int)(Math.random () * (r - p) + p);
int t = a[r];
a[r] = a[random];
a[random] = t;
int x = a[r];
int i = p - 1;
for (int j = p; j < r; j++) {
if (a[j] <= x) {
i += 1;
int temp = a[i];
a[i] = a[j];
a[j] = temp;
}
}
int temp = a[i + 1];
a[i + 1] = a[r];
a[r] = temp;
return i + 1;
}