贪心、树的重心--CF708C

题目大意:
给定一棵n 个结点的树,对于每个结点求出它是否能通过至多一次操
作,使其成为这棵树的重心。一次操作可以删去原树中一条边,然后再
连上任意一条边,要求操作后图仍是一棵n 个结点的树

solution:
操作实际就是选择一个子树然后将其换个父亲
对于一个非重心结点u,它有且仅有一个儿子的子树大小大于n/2
贪心地从这个子树中找出一个尽量大且大小不超过n/2 的子树,使u成为它的新父亲
考虑原树的一个重心C,并将树以C 为根
对于非重心结点u,它父亲方向显然是超重的那个子树
重心的任意一个儿子大小均不超过n/2
重心下size 最大的子树中的结点,应把重心下次大子树接过去
其他子树中结点,应把重心下最大子树接过去
O(n)

这里要注意一些细节
比如以重心为根重新建树
还有就是找到最大和次大的子树怎么找
以及很重要的一点,如果最大的子树的siz=n/2的话
这种方法有可能失效
就比如说这组数据:
6
1 2
1 3
1 4
4 5
5 6
得出结果只有6不能,但实际上6也可以
因为这棵树不只有一个重心,这样子找出来重心可能有一个子树是链,比如1做根
这样子的话可能不对了,但旋转一下就可以发现以4做根的话
次大的子树大小就是3了,这样6就可行
所以说我们要特判一下如果mxson*2=n的话,所有重心上的节点都可行

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define maxn 400005
using namespace std;
int n,cnt,head[maxn],son[maxn],size=maxn,bary,t,premx,mxson,mx,pre;
bool can[maxn];

inline int rd(){
  int x=0,f=1;char c=' ';
  while(c<'0' || c>'9') {if(c=='-')f=-1;c=getchar();}
  while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
  return x*f;
}

struct EDGE {int to,nxt;}edge[maxn*2];

void add(int x,int y){
  edge[++cnt].to=y;
  edge[cnt].nxt=head[x];
  head[x]=cnt;
}

void dfs(int u,int fa){//找重心
  int tmp=0; son[u]=1;
  for(int i=head[u];i;i=edge[i].nxt){
    int v=edge[i].to; if(v==fa) continue;
    dfs(v,u); son[u]+=son[v];
    tmp=max(tmp,son[v]);
  }
  tmp=max(tmp,n-son[u]);
  if(tmp<size || (tmp==size && u<bary)) size=tmp,bary=u;
}

void find(int u){//找到最大和次大的子树要这么找
  for(int i=head[u];i;i=edge[i].nxt){
    int v=edge[i].to;
    if(son[v]>mxson) mxson=son[v],mx=v;
  }
  for(int i=head[u];i;i=edge[i].nxt){
    int v=edge[i].to;
    if(son[v]>premx && v!=mx) premx=son[v],pre=v;
  }
}

void work(int u,int fa,bool b){
  if(b && mxson*2==n) can[u]=1;//这个地方一定要写!!!
  // if(b && n-premx-son[u]<=n/2) can[u]=1;//不同的写法,都可以
  if(b && son[u]+premx>(n-1)/2) can[u]=1;
  // else if(!b && son[u]+mxson>(n-1)/2) can[u]=1;
  else if(!b && n-mxson-son[u]<=n/2) can[u]=1;
  for(int i=head[u];i;i=edge[i].nxt){
    int v=edge[i].to; if(v==fa) continue;
    work(v,u,b);
  }
  return ;
}

int main(){
  n=rd();
  for(int i=1;i<n;i++) {
    int x=rd(),y=rd(); add(x,y); add(y,x);
  }
  dfs(1,0);
  if(bary!=1){
    memset(son,0,sizeof son); premx=mxson=0;
    t=bary;
    dfs(t,0); bary=t; //把重心转成根
  }
  can[bary]=1;
  find(bary);
  for(int i=head[bary];i;i=edge[i].nxt){
    int v=edge[i].to;
    if(v==mx) {
      work(v,bary,1);
    }
    else {
      work(v,bary,0);
    }
  }
  for(int i=1;i<=n;i++)
    if(can[i]) printf("1 ");
    else printf("0 ");
  return 0;
}

emmm
其实还有个做法是树形dp
思想也是一样的,但其实是没有想到以重心为根重建树的一种不好的做法
还是贪心清新多了
这里因为我懒就直接找了别人的代码···

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<set>
#include<map>
#include<queue>
#include<algorithm>
#include<vector>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<stack>
#define INF 2100000000
#define ll long long
#define clr(x)  memset(x,0,sizeof(x))
#define clrmax(x)  memset(x,127,sizeof(x))

using namespace std;

inline int read()
{
    char c;
    int ret=0;
    while(!(c>='0'&&c<='9'))
        c=getchar();
    while(c>='0'&&c<='9')
    {
        ret=(c-'0')+(ret<<1)+(ret<<3);
        c=getchar();
    }
    return ret;
}

#define M 400005

int first[M],next[M*2],to[M*2];
int fa[M],size[M],can[M],c,n,t;
int fir[M],sec[M],fir_p[M];

void addedge(int s,int v)
{
    next[++t]=first[s];
    first[s]=t;
    to[t]=v;
}

void bulid(int x)
{
    size[x]=1;
    int b=1;
    for(int i=first[x];i;i=next[i])
    {
        int v=to[i];
        if(fa[x]==v)continue;
        fa[v]=x;
        bulid(v);
        if(size[v]<=n/2&&size[v]>fir[x])
        {
            fir[x]=size[v];
            fir_p[x]=v;
        }
        if(fir[v]>fir[x])
        {
            fir[x]=fir[v];
            fir_p[x]=v;
        }
        if(size[v]>n/2)b=0;
        size[x]+=size[v];
    }
    for(int i=first[x];i;i=next[i])
    {
        int v=to[i];
        if(v==fa[x]||v==fir_p[x])continue;
        if(size[v]<=n/2&&size[v]>sec[x])
            sec[x]=size[v];
        if(fir[v]>sec[x])
            sec[x]=fir[v];
    }
    if(b&&size[x]-1>=(n-1)/2)can[x]=1;
    if(size[x]>=n/2&&size[fir_p[x]]-fir[x]<=n/2)can[x]=1;
}

void dfs(int x,int mx,int up)
{
    int te=mx;
    if(size[x]<=n/2&&(n-size[x]-mx)<=n/2)can[x]=1;
    for(int i=first[x];i;i=next[i])
    {
        mx=te;
        int v=to[i];
        if(v==fa[x])continue;
        int down=up+size[x]-size[v];
        if(down<=n/2)mx=max(mx,down);
        if(v==fir_p[x])mx=max(mx,sec[x]);
        else mx=max(mx,fir[x]);
        dfs(v,mx,down);
    }
}

int main()
{
    freopen("in.txt","r",stdin);
    freopen("out.txt","w",stdout);
    n=read();
    for(int i=1;i<n;i++)
    {
        int a=read(),b=read();
        addedge(a,b);
        addedge(b,a);
    }
    bulid(1);
    dfs(1,0,0);
    for(int i=1;i<=n;i++)
        printf("%d ",can[i]);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 0-1背包问题是一个经典的组合优化问题,其目标是在限定的背包容量下,选择一组物品放入背包中,使得背包中物品的总价值最大化。 贪心法是一种求解0-1背包问题的常用方法。其基本思想是每次选择当前最有利的物品放入背包中,直至背包容量不足或所有物品都放入背包为止。 具体实现贪心法0-1背包问题c的步骤如下: 1. 将所有物品按照单位重量的价值从大到小进行排序; 2. 初始化背包容量剩余空间为背包的总容量,初始化背包的总价值为0; 3. 依次遍历排序后的物品列表,对于每个物品: - 如果物品重量小于等于背包剩余空间,则将该物品放入背包中,背包剩余空间减少该物品重量,背包总价值增加该物品价值; - 如果物品重量大于背包剩余空间,则终止循环; 4. 返回背包中的物品总价值作为结果。 贪心法0-1背包问题c的时间复杂度为O(nlogn),其中n为物品数量,主要消耗时间的操作是对物品列表的排序。 ### 回答2: 贪心法是一种常用的求解最优问题的算法,包括0-1背包问题。在0-1背包问题中,我们有一系列物品,每个物品有重量和价值两个属性。我们需要选择一些物品放入背包,使得背包的总重量不超过背包的容量,同时能够使得背包中物品的总价值最大化。 贪心法的思想是每次选择当前最有利于解的选择,即每次选择重量最小但价值最高的物品放入背包。具体步骤如下: 1. 根据物品的重量和价值计算每个物品的价值密度(即单位重量下的价值)。 2. 将物品按照价值密度从高到低排序。 3. 依次选择物品放入背包,直到背包的重量达到限制或者所有物品都已经放入背包。 4. 计算放入背包的物品的总价值。 贪心法的优点是简单高效,时间复杂度较低。然而,贪心法并不保证能够得到最优解。在某些情况下,使用贪心法得到的结果可能与动态规划等其他算法得到的结果不一致。 对于0-1背包问题c,我们可以使用贪心法求解。具体步骤如下: 1. 计算每个物品的价值密度,即价值除以重量。 2. 按照价值密度从高到低对物品进行排序。 3. 依次选择物品放入背包,直到背包的重量达到限制或者所有物品都已经放入背包。 4. 最后计算放入背包的物品的总价值。 需要注意的是,虽然贪心法在某些情况下可能得到次优解,但在某些特殊的条件下,贪心法却可以得到最优解。因此,在实际应用中,根据具体问题的特点选择合适的算法是很重要的。 ### 回答3: 0-1背包问题是一个经典的动态规划问题,目标是在有限容量的背包中选择若干个物品放入背包,使得物品的总价值最大化。而贪心法无法解决0-1背包问题的最优解。 贪心法是一种贪婪的策略,每次选择当前看起来最好的解决方案。但在0-1背包问题中,贪心法会导致错误的结果。例如,假设有三个物品A、B和C,分别占据1、4和3的容量,价值分别为2、5和4,而背包的容量为4。若采用贪心法,首先选择B放入背包,然后剩余容量为0,无法再放入其他物品,总价值为5。但实际上,最优解应该是选择A和C,总价值为6。 因此,为了解决0-1背包问题,需要采用动态规划的方法。动态规划通过将问题划分为子问题,并保存子问题的解,最后通过组合子问题的解得到原问题的最优解。对于0-1背包问题,可以使用一个二维数组dp来保存子问题的解,其中dp[i][j]表示在前i个物品中,容量为j的背包可以获得的最大价值。通过迭代计算dp数组,最后得到dp[n][C]即为问题的最优解。 综上所述,贪心法无法解决0-1背包问题的最优解,需要采用动态规划的方法来求解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值