离散数学-通过真值表计算主合取范式和主析取范式

本文介绍了主合取范式(CNF)和主析取范式(DNF)的定义,并通过例题(p∨q)→¬r展示了如何根据真值表得出这两个形式的转换过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(去你丫的离散数学)

首先,我们需要理解主合取范式(CNF)和主析取范式(DNF)的定义:

  • 主合取范式(CNF):是一个逻辑公式,它是一系列子句的逻辑与(合取),每个子句是一系列文字的逻辑或(析取)。文字是变量或其否定。

  • 主析取范式(DNF):是一个逻辑公式,它是一系列子句的逻辑或(析取),每个子句是一系列文字的逻辑与(合取)。文字是变量或其否定。

然后,我们可以根据真值表得出公式的主合取范式和主析取范式:

  1. 得出主合取范式:查看真值表中使得公式值为的行,对于这些行,取变量值为的变量的否定,和变量值为的变量,将它们用逻辑或(析取)连接起来形成一个子句,然后将所有子句用逻辑与(合取)连接起来,就得到了主合取范式。

  2. 得出主析取范式:查看真值表中使得公式值为的行,对于这些行,取变量值为的变量,和变量值为的变量的否定,将它们用逻辑与(合取)连接起来形成一个子句,然后将所有子句用逻辑或(析取)连接起来,就得到了主析取范式。

例题:写出公式(p∨q)→¬r的真值表, 并依据真值表给出其主合取范式、主析取范式及其公式的类型。

首先,我们可以写出公式(p∨q)→¬r的真值表:

pqrp∨q(p∨q)→¬r
TTTTF
TTFTT
TFTTF
TFFTT
FTTTF
FTFTT
FFTFT
FFFFT

然后,我们可以根据真值表得出公式的主合取范式和主析取范式: 

  • 主合取范式(CNF):第1,3,5行为假,p,q,r的值分别是111,101,011,取反之后就是000,010,100, 所以应该是(¬p∨¬q∨¬r)∧(¬p∨q∨¬r)∧(p∨¬q∨¬r)

  • 主析取范式(DNF):第2,4,6,7,8行为假,p,q,r的值分别是110,100,010,001,000。所以应该是(p∧q∧¬r)∨(p∧¬q∧¬r)∨(¬p∧q∧¬r)∨(¬p∧¬q∧r)∨(¬p∧¬q∧¬r)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值