发表于ACL2018
本文指出KB embedding应当落在一个低维空间中,更能捕捉组合关系;以往方法使用预定义的规则限制维度,但由于不知道哪些关系具有组合性,效果不理想。本文提出使用Autoencoder联合训练达到降维目的。
模型:
实体定义为向量,关系定义为矩阵,composition训练:即根据路径和两端实体计算loss
Autoencoder联合训练:对关系矩阵构建一个autoencoder,计算重构loss。使用RuLU函数是的code具有稀疏性。
优化技巧:
直接采用上述两个loss一起训练很难平衡两者关系。
本文讨论了如何设计参数才能有效训练
结论:
autoencoder联合训练帮助KB embedding降维,同时Autoencoder学到了低维稀疏表示,更具有可解释性