Interpretable and Compositional Relation Learning by Joint Training with an Autoencoder读书笔记

发表于ACL2018

本文指出KB embedding应当落在一个低维空间中,更能捕捉组合关系;以往方法使用预定义的规则限制维度,但由于不知道哪些关系具有组合性,效果不理想。本文提出使用Autoencoder联合训练达到降维目的。

 

模型:

    实体定义为向量,关系定义为矩阵,composition训练:即根据路径和两端实体计算loss

    Autoencoder联合训练:对关系矩阵构建一个autoencoder,计算重构loss。使用RuLU函数是的code具有稀疏性。

优化技巧:

    直接采用上述两个loss一起训练很难平衡两者关系。

    本文讨论了如何设计参数才能有效训练

结论:

    autoencoder联合训练帮助KB embedding降维,同时Autoencoder学到了低维稀疏表示,更具有可解释性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值