Interpretable and Compositional Relation Learning by Joint Training with an Autoencoder读书笔记

发表于ACL2018

本文指出KB embedding应当落在一个低维空间中,更能捕捉组合关系;以往方法使用预定义的规则限制维度,但由于不知道哪些关系具有组合性,效果不理想。本文提出使用Autoencoder联合训练达到降维目的。

 

模型:

    实体定义为向量,关系定义为矩阵,composition训练:即根据路径和两端实体计算loss

    Autoencoder联合训练:对关系矩阵构建一个autoencoder,计算重构loss。使用RuLU函数是的code具有稀疏性。

优化技巧:

    直接采用上述两个loss一起训练很难平衡两者关系。

    本文讨论了如何设计参数才能有效训练

结论:

    autoencoder联合训练帮助KB embedding降维,同时Autoencoder学到了低维稀疏表示,更具有可解释性

训练可解释的卷积神经网络是通过区分不同的类别来实现的。 卷积神经网络(CNN)是一种用于图像识别和分类任务的深度学习模型。然而,CNN的内部工作方式往往被认为是黑盒子,难以解释其决策过程和分类结果。为了提高CNN的解释性,可以通过不同iating算法来训练可解释的CNN。 不同iating是一种梯度优化方法,它通过梯度反向传播来优化网络的参数。在CNN中,不同iating的关键思想是通过最小化特定类别的损失函数来训练网络,从而鼓励网络关注于这个类别的特征。 通过不同iating类别,我们可以训练网络更加关注于区分不同类别的特征。这样训练出的网络能够通过可解释的方式较好地解释其决策过程。例如,在图像分类任务中,我们可以选择一些代表性的类别,如猫和狗,然后通过最小化猫和狗类别的损失函数来训练网络。这将使网络更加关注于猫和狗之间的区别,从而使其更容易解释其分类结果。 此外,还可以使用可视化方法来进一步解释训练出的CNN。通过可视化网络的卷积层和特征图,我们可以看到网络在不同类别上的激活模式,从而理解网络是如何学习到这些特征的。 总而言之,通过不同iating类别并结合可视化方法,我们可以训练出更加可解释的卷积神经网络,更好地理解其决策过程和分类结果。这将对深度学习模型的解释性研究和应用有着重要的意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值