微分方程模型

本文介绍了微分方程在生物、经济等领域建模的重要性,特别是通过体重问题和人口模型来阐述其原理。从简单模型如指数增长模型到更复杂的Logistic模型,展示了微分方程如何描述和预测对象随时间的演变。同时,文章讨论了微分方程建模的步骤,包括静态与动态模型、单位匹配和约束条件的确定。
摘要由CSDN通过智能技术生成

微分方程模型简介

在研究生物、经济等学科的实际问题时,常常会联系到某些变量的变化率或导数,这样所得到变量之间的关系式就是微分方程。微分方程反映的是变量之间的间接关系,因此,要得到直接关系,就得求解微分方程。

1.微分方程建模分类:

静态优化模型
存储模型,价格模型,消费者均衡模型

动态模型
人口模型,传染病模型

  • 描述对象特征随时间(空间)的演变过程
  • 分析对象特征的变化规律
  • 预报对象特征的未来性质
  • 研究控制对象特征的手段

稳态模型
种群的竞争模型,军备竞赛模型

2.建立微分方程模型的方法

翻译或转化
在实际问题中许多表示导数的常用词,如“速率”、‘增长”(在生物学以及人口问题研究中),“衰变”(在放射性问题中),以及“边际的”(在经济学中)等。

建立瞬时表达式
根据自变量有微小改变△t时,因变量的增量△W,建立起在时段△t上的增量表达式,令△t →0,即得到 dw/dt 的表达式。

配备物理单位
在建模中应注意,一旦确定了哪些子项应该列入微分方程中,就要确保每一项都采用同样的物理单位,以保证式子的平衡。

确定约束条件
约束条件是关于研究对象在某一特定时刻或边界上的信息(比如初始时刻),它们独立于微分方程而存在,用以确定有关的常数(比如比例系数、解中的积分常数、方程参数)。为完整充分地给出问题的数学陈述,应将这些约束条件和微分方程一起列出。

引例(体重问题):

某人的食量是10467(焦/天),其中5038(焦/天)用于基本的新陈代谢(即自动消耗)。在健身训练中,他所消耗的热量大约是69(焦/公斤*天)乘以他的体重 (公斤).假设以脂肪形式贮藏的热量100%地有效,而1公斤脂肪含热量41868焦。
试研究此人的体重随时间变化的规律.

1模型分析
问题中并未出现“变化率”、“导数”等关键词,但要寻找的是体重(记为W)关于时间(记为t)的函数。如果把W看成是t的连续可微函数,则就找到了一个含有 dw/dt 的微分方程。

2模型假设
(1)以W(t)表示t时刻某人体重,并设一天开始时人的体重为W0 。
(2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎明之道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值