一、基本概念
1.微分方程:包含连续变化的自变量,未知函数及其变化率(函数的微分或导数)的方程式。
2.使用场合:
1) 研究对象涉及某个过程。
2) 物体随着时间连续变化的规律。
3.例子:人口预测、发射火箭的高度
二、人口增长模型
(一)人口指数增长模型
现已知某个地区当年的人口数量为,初始时间
,该地区人口数量随时间变化的函数为
,人口增长率为r(r为常数),则得到
满足的微分方程:
其中表示人口增长随时间的微分,即变化率,
表示单位时间内
的增量,所以该模型的意义为在初值条件为
的条件下人口增长随时间的变化率等于单位时间内人口增量。
由上式可以解出,其中,当r>0时,人口将按指数规律无限增长。
模型缺点:只单纯考虑了人口的增长率,没有考虑自然环境,资源等对人口的影响,这是一种理想的情况,其最终得出的结论是人口将一直无限制增长下去。这显然是与现实情况相悖。
(二)改进的人口增长模型---logistic模型
资源和环境对人口的增长起到了抑制作用,且人口数量越多,这种抑制作用越强,具体表现在对增长率r的抑制上。这样一来,r随着x的增加而下降。
现将r表示成x的函数,即r(x),同时令r(x)=ax+b,为了使a,b有意义,引入一些参数:
1)内禀增长率 r (内禀增长率指在给定的物理和生物的条件下,具有稳定的年龄组配的种群的最大瞬时增长率) :r是理论上x=0时的增长率,即r(0)=r,因此b=r。
2)人口容量(在特定时空条件下,资源、生态、环境在保障人类基本生理需求的前提下,所能够供养的最大人口数):
在生物学上称为环境容纳量,即当x=
时,人口不再增长,用函数关系式可以表示为
,从而解得
。
由已知,r(x)=ax+b,且b=r,,因此将三式联立整理可得:
由,加上
,用r(x)替换r,可得:
其中,rx表示人口自身的一个增长趋势,因子则体现了资源和环境对人口增长的抑制作用,当x越大,rx越大,
越小,人口增长是这两个因子共同作用的结果。对改进后的人口增长模型进行求解,可得