MATLAB 论文复现——基于多智能体近端策略网络的数据中心双层优化调度

摘要:随着新一代信息通信技术,如5G、云计算和人工智能的不断演进,世界正迅速迈入数字经济的快车道。针对数据中心中可再生能源和工作负载预测的不确定性,提出一种基于多智能体近端策略网络的数据中心双层优化调度方法。首先,建立了数据中心双层时空优化调度框架,对数据中心工作负载、IT设备、空调设备进行详细建模;在此基础上,提出数据中心的双层优化调度模型,上层以IDC运营管理商总运营成本最小为目标进行时间维度调度,下层以各IDC运行成本最低为目标进行空间维度调度;然后,介绍多智能体近端策略网络算法原理,设计数据中心双层优化调度模型的状态空间、动作空间和奖励函数;最后,针对算例进行离线训练和在线调度决策,仿真结果表明,所提模型和方法能够有效降低系统成本和能耗,实现工作负载的最佳分配,具有较好的经济性和鲁棒性。
关键词:    数据中心;近端策略优化;时空调度;工作负载分配;

[1]杨秀,张相寅,黄海涛,等.基于多智能体近端策略网络的数据中心双层优化调度[J/OL].南方电网技术,1-17[2024-07-15].http://kns.cnki.net/kcms/detail/44.1643.tk.20240627.1204.004.html.
 

为了实现基于多智能体近端策略网络的数据中心双层优化调度方法,我们将按照以下步骤编写MATLAB代码:

步骤 1: 初始化数据和建模
首先,需要建立数据中心的双层时空优化调度框架,包括工作负载、IT设备和空调设备的详细模型。

matlab
复制代码
function [workload, itEquipment, acEquipment] = initializeData()
    % 工作负载数据
    workload = rand(24, 1) * 100; % 示例数据&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值