摘要:随着新一代信息通信技术,如5G、云计算和人工智能的不断演进,世界正迅速迈入数字经济的快车道。针对数据中心中可再生能源和工作负载预测的不确定性,提出一种基于多智能体近端策略网络的数据中心双层优化调度方法。首先,建立了数据中心双层时空优化调度框架,对数据中心工作负载、IT设备、空调设备进行详细建模;在此基础上,提出数据中心的双层优化调度模型,上层以IDC运营管理商总运营成本最小为目标进行时间维度调度,下层以各IDC运行成本最低为目标进行空间维度调度;然后,介绍多智能体近端策略网络算法原理,设计数据中心双层优化调度模型的状态空间、动作空间和奖励函数;最后,针对算例进行离线训练和在线调度决策,仿真结果表明,所提模型和方法能够有效降低系统成本和能耗,实现工作负载的最佳分配,具有较好的经济性和鲁棒性。
关键词: 数据中心;近端策略优化;时空调度;工作负载分配;
[1]杨秀,张相寅,黄海涛,等.基于多智能体近端策略网络的数据中心双层优化调度[J/OL].南方电网技术,1-17[2024-07-15].http://kns.cnki.net/kcms/detail/44.1643.tk.20240627.1204.004.html.
为了实现基于多智能体近端策略网络的数据中心双层优化调度方法,我们将按照以下步骤编写MATLAB代码:
步骤 1: 初始化数据和建模
首先,需要建立数据中心的双层时空优化调度框架,包括工作负载、IT设备和空调设备的详细模型。
matlab
复制代码
function [workload, itEquipment, acEquipment] = initializeData()
% 工作负载数据
workload = rand(24, 1) * 100; % 示例数据&#x