Doris与Hadoop生态集成:打破数据孤岛

Doris与Hadoop生态集成:打破数据孤岛

关键词:Doris、Hadoop生态、数据孤岛、OLAP引擎、列式存储、数据集成、实时分析
摘要:你有没有过这样的经历?想找家里的剪刀,却发现它可能在厨房抽屉、客厅储物柜或卧室床头柜里——翻遍所有“数据孤岛”才找到?企业的数据世界里,这样的麻烦更严重:销售数据存在MySQL、库存数据躺在HDFS、用户行为存于Hive,要分析“销量与库存的关系”得来回导数据,像跨三个超市查同一款商品的库存。而Doris与Hadoop生态的集成,就是给这些“分散的抽屉”装了一个“智能中控”:Hadoop负责存所有“大件物品”(海量历史数据),Doris负责把“常用物品”(实时/高频数据)放到“床头柜”(内存/列式存储),让你“伸手就拿到想要的数据”。本文会用超市理货的比喻讲清核心逻辑,用代码实战演示集成过程,帮你彻底理解“如何用Doris+Hadoop打破数据孤岛”。

背景介绍:为什么需要“打通数据抽屉”?

目的和范围

我们的目标很简单:解决“数据躺在不同地方,想分析得来回搬”的痛点。范围覆盖“从Hadoop生态(HDFS、Hive、HBase)到Doris的集成”,以及“集成后如何做统一分析”。

预期读者

  • 刚接触大数据的“超市理货员”(想搞懂数据怎么存怎么查);
  • 被数据孤岛折磨的“企业分析师”(想快速查跨系统数据);
  • 负责搭建数据平台的“技术主管”(想选对工具组合)。

文档结构概述

  1. 用“超市理货”的故事讲清核心概念(Doris=收银台,Hadoop=仓库);
  2. 画流程图看“数据怎么从仓库到收银台”;
  3. 写代码实战“把Hive的库存数据导入Doris做实时分析”;
  4. 讲真实场景“电商用这套组合做实时销量预警”;
  5. 聊未来“Doris+Hadoop会变什么样”。

术语表

核心术语定义
  • 数据孤岛:数据存在不同系统(如MySQL、HDFS、Excel),无法直接关联分析的状态(像每个抽屉独立,没有标签)。
  • Hadoop生态:一套“存大数据、处理大数据”的工具集合,核心是HDFS(存数据的仓库)MapReduce(理货的工人)Hive(统计库存的Excel)
  • Doris:一款“快速查数据”的OLAP引擎(像超市的收银台,能1秒算出“今天卖了多少瓶可乐”)。
  • OLAP:在线分析处理(简单说就是“快速回答复杂问题”,比如“过去7天北京地区iPhone 15的销量 Top3 门店”)。
相关概念解释
  • 列式存储:Doris存数据的方式,像把“所有可乐的销量”放在一列、“所有矿泉水的销量”放在另一列(对比MySQL的“一行存一个订单的所有信息”),查“可乐总销量”时不用翻整行数据,更快。
  • Broker Load:Doris导入Hadoop数据的方式,相当于“派个快递员从仓库把货搬到收银台”。
缩略词列表
  • HDFS:Hadoop Distributed File System(Hadoop分布式文件系统,存大数据的仓库);
  • OLAP:Online Analytical Processing(在线分析处理,快速查数据);
  • SQL:Structured Query Language(结构化查询语言,“问数据问题”的语法)。

核心概念与联系:用“超市理货”讲清Doris+Hadoop

故事引入:超市里的“数据孤岛”难题

假设你是一家连锁超市的店长,遇到三个头疼的问题:

  1. 找库存得跑仓库:想知道“可乐剩多少”,得让理货员去仓库翻HDFS(大仓库)里的Excel(Hive表),要等10分钟;
  2. 查销量得等收银台:想知道“今天卖了多少可乐”,收银台(Doris)能1秒告诉你,但收银台不知道仓库还有多少;
  3. 调货得算半天:想做“销量超库存时自动调货”,得把收银台的销量数据导到仓库的Excel里,再手动算,要花1小时。

这就是数据孤岛的痛苦——仓库(Hadoop)和收银台(Doris)的数据不通,做决策慢半拍。而Doris与Hadoop的集成,就是给仓库装了“自动传送带”:仓库的库存数据实时传到收银台,收银台的销量数据实时反馈回仓库,店长打开电脑就能看到“当前销量+剩余库存”的实时报表。

核心概念解释:像给小学生讲“超市工具”

我们用“超市场景”给每个核心概念贴“生活标签”:

核心概念一:Hadoop生态=超市的“大仓库+理货区”

Hadoop是“存大数据+处理大数据”的工具集合,就像超市的大仓库(HDFS)理货区(MapReduce/Hive)

  • HDFS:存所有“暂时不用但必须留的货”(比如去年的销售记录、所有门店的库存数据),优点是能存100TB甚至1PB的大文件,缺点是“拿东西慢”(要找去年的可乐销量,得翻整个仓库);
  • Hive:理货区的“统计Excel”,能把HDFS里的原始数据(比如每笔订单的时间、商品、数量)变成“按天统计的销量表”,优点是能处理海量数据,缺点是“算得慢”(统计上个月的总销量要等5分钟)。
核心概念二:Doris=超市的“智能收银台”

Doris是一款实时OLAP引擎,就像超市的“智能收银台”:

  • :能1秒回答“今天10点到12点卖了多少瓶可乐”(对比Hive的5分钟);
  • :支持复杂查询(比如“北京地区iPhone 15的销量 Top3 门店,按小时统计”);
  • 省空间:用“列式存储”压缩数据,比如10GB的原始销量数据,压缩后只有1GB(像把零散的零食装成大礼包,节省货架空间)。
核心概念三:数据集成=“仓库到收银台的自动传送带”

数据集成就是把Hadoop里的数据“搬到”Doris里,或者让Doris“直接看”Hadoop里的数据,就像超市的自动传送带

  • 主动搬:比如每天凌晨把Hive里的“昨日库存数据”传到Doris(Broker Load);
  • 直接看:Doris不用搬数据,直接查询HDFS里的文件(External Table,外部表)。

核心概念之间的关系:超市工具的“协作流程图”

Hadoop、Doris、数据集成的关系,就像超市的“进货→理货→销售→补货”流程:

  1. 进货到仓库(HDFS):供应商把货送到HDFS大仓库;
  2. 理货成报表(Hive):理货员用Hive把原始货单做成“按商品分类的库存表”;
  3. 传送到收银台(Doris):自动传送带(Broker Load)把库存表传到Doris的“实时货架”;
  4. 销售实时统计(Doris查询):收银台用Doris实时算“当前销量”,并把数据反馈回仓库;
  5. 自动补货(闭环):仓库根据Doris的销量数据,自动给缺货的门店补货。

用“小学生能懂的比喻”总结:

  • Hadoop是“存货+理货的后台”;
  • Doris是“卖货+统计的前台”;
  • 数据集成是“后台到前台的传送带”;
  • 三者一起,让“前台能看后台的货,后台能知道前台的卖货情况”。

核心概念原理和架构的文本示意图

我们用“超市架构图”对应技术架构:

超市角色 技术组件 核心功能
大仓库 HDFS 存海量原始数据(比如所有订单、库存)
理货区 Hive/MapReduce 处理原始数据成结构化表(比如按天统计)
自动传送带 Broker Load 把Hive表的数据导入Doris
智能收银台 Doris 实时查询“销量+库存”,生成报表
店长的电脑 BI工具(Superset) 展示Doris的实时报表

Mermaid 流程图:数据从Hadoop到Doris的旅程

上层应用业务对实时数据的需求,主要包含两部分内容:1、 整体数据的实时分析。2、 AB实验效果的实时监控。这几部分数据需求,都需要进行的下钻分析支持,我们希望能够建立统一的实时OLAP数据仓库,并提供一套安全、可靠的、灵活的实时数据服务。目前每日新增的曝光日志达到几亿条记录,再细拆到AB实验更细维度时,数据量则多达上百亿记录,多维数据组合下的聚合查询要求秒级响应时间,这样的数据量也给团队带来了不小的挑战。OLAP层的技术选型,需要满足以下几点:1:数据延迟在分钟级,查询响应时间在秒级2:标准SQL交互引擎,降低使用成本3:支持join操作,方便维度增加属性信息4:流量数据可以近似去重,但订单行要精准去重5:高吞吐,每分钟数据量在千W级记录,每天数百亿条新增记录6:前端业务较多,查询并发度不能太低通过对比开源的几款实时OLAP引擎,可以发现Doris和ClickHouse能够满足上面的需求,但是ClickHouse的并发度太低是个潜在的风险,而且ClickHouse的数据导入没有事务支持,无法实现exactly once语义,对标准SQL的支持也是有限的。所以针对以上需求Doris完全能解决我们的问题,DorisDB是一个性能非常高的分布式、面向交互式查询的分布式数据库,非常的强大,随着互联网发展,数据量会越来越大,实时查询需求也会要求越来越高,DorisDB人才需求也会越来越大,越早掌握DorisDB,以后就会有更大的机遇。本课程基于真实热门的互联网电商业务场景为案例讲解,具体分析指标包含:AB版本分析,下砖分析,营销分析,订单分析,终端分析等,能承载海量数据的实时分析,数据分析涵盖全端(PC、移动、小程序)应用。整个课程,会带大家实践一个完整系统,大家可以根据自己的公司业务修改,既可以用到项目中去,价值是非常高的。本课程包含的技术:开发工具为:IDEA、WebStormFlink1.9.0DorisDBHadoop2.7.5Hbase2.2.6Kafka2.1.0Hive2.2.0HDFS、MapReduceFlume、ZookeeperBinlog、Canal、MySQLSpringBoot2.0.8.RELEASESpringCloud Finchley.SR2Vue.js、Nodejs、Highcharts、ElementUILinux Shell编程等课程亮点:1.企业接轨、真实工业界产品2.DorisDB高性能分布式数据库3.大数据热门技术Flink4.支持ABtest版本实时监控分析5.支持下砖分析6.数据分析涵盖全端(PC、移动、小程序)应用7.主流微服务后端系统8.天级别小时级别多时间方位分析9.数据库实时同步解决方案10.涵盖主流前端技术VUE+jQuery+Ajax+NodeJS+ElementUI11.集成SpringCloud实现统一整合方案12.互联网大数据企业热门技术栈13.支持海量数据的实时分析14.支持全端实时数据分析15.全程代码实操,提供全部代码和资料16.提供答疑和提供企业技术方案咨询企业一线架构师讲授,代码在老师的指导下企业可以复用,提供企业解决方案。  版权归作者所有,盗版将进行法律维权。 
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值