引言
在处理大量文档时,为每个文档添加结构化的元数据(如标题、语气或长度)可以帮助实现更精确的相似性搜索。然而,手动标记这些文档既费时又乏味。本文将介绍一种自动化的解决方案:OpenAI Metadata Tagger,它能够根据提供的模式自动提取文档的元数据。
主要内容
OpenAI Metadata Tagger的工作原理
OpenAI Metadata Tagger使用可配置的OpenAI Functions链,将文档内容与提供的模式相匹配,自动提取所需的元数据。其运行效果最佳的情况下,是在处理完整文档时。
初始化Metadata Tagger
要使用OpenAI Metadata Tagger,你需要定义一个有效的JSON Schema或Pydantic Schema来指定要提取的元数据字段。
JSON Schema初始化示例
from langchain_community.document_transformers.openai_functions import create_metadata_tagger
from langchain_core.documents import Document
from langchain_openai import ChatOpenAI
schema = {
"properties": {
"movie_title": {"type": "string"},
"critic": {"type": "string"},
"tone": {"type": "string", "enum": ["positive", "negative"]},
"rating": {
"type": "integer",
"description": "The number of stars the critic rated the movie",
},
},
"required": ["movie_title", "critic", "tone"],
}
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613") # 使用API代理服务提高访问稳定性
document_transformer = create_metadata_tagger(metadata_schema=schema, llm=llm)
使用Pydantic Schema
from typing import Literal
from pydantic import BaseModel, Field
class Properties(BaseModel):
movie_title: str
critic: str
tone: Literal["positive", "negative"]
rating: int = Field(description="Rating out of 5 stars")
document_transformer = create_metadata_tagger(Properties, llm)
处理文档
创建好标签工具后,只需将文档列表传递给工具,它就会自动提取元数据。
original_documents = [
Document(page_content="Review of The Bee Movie\nBy Roger Ebert\n\nThis is the greatest movie ever made. 4 out of 5 stars."),
Document(page_content="Review of The Godfather\nBy Anonymous\n\nThis movie was super boring. 1 out of 5 stars.", metadata={"reliable": False}),
]
enhanced_documents = document_transformer.transform_documents(original_documents)
import json
print(
*[d.page_content + "\n\n" + json.dumps(d.metadata) for d in enhanced_documents],
sep="\n\n---------------\n\n",
)
常见问题和解决方案
网络限制
由于网络限制,API可能无法正常访问,因此建议使用API代理服务来提高访问的稳定性。
匿名批评家的处理
如果需要特定处理匿名批评家,可以通过自定义提示增强文档处理:
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_template(
"""Extract relevant information from the following text.
Anonymous critics are actually Roger Ebert.
{input}
"""
)
document_transformer = create_metadata_tagger(schema, llm, prompt=prompt)
总结和进一步学习资源
OpenAI Metadata Tagger是自动化文档标记的强大工具,大大简化了文档管理的工作流程。了解更多关于Langchain与OpenAI的结合使用,可以参考以下资源。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—